Laboratoire d'Optique et Biosciences, INSERM U696, CNRS UMR 7645 Ecole Polytechnique, 91128 Palaiseau, France.
J Biol Chem. 2012 Feb 24;287(9):6851-9. doi: 10.1074/jbc.M111.299297. Epub 2012 Jan 4.
Soluble guanylate cyclase (sGC) is the mammalian endogenous nitric oxide (NO) receptor. The mechanisms of activation and deactivation of this heterodimeric enzyme are unknown. For deciphering them, functional domains can be overexpressed. We have probed the dynamics of the diatomic ligands NO and CO within the isolated heme domain β(1)(190) of human sGC by piconanosecond absorption spectroscopy. After photo-excitation of nitrosylated sGC, only NO geminate rebinding occurs in 7.5 ps. In β(1)(190), both photo-dissociation of 5c-NO and photo-oxidation occur, contrary to sGC, followed by NO rebinding (7 ps) and back-reduction (230 ps and 2 ns). In full-length sGC, CO geminate rebinding to the heme does not occur. In contrast, CO geminately rebinds to β(1)(190) with fast multiphasic process (35, 171, and 18 ns). We measured the bimolecular association rates k(on) = 0.075 ± 0.01 × 10(6) M(-1) · S(-1) for sGC and 0.83 ± 0.1 × 10(6) M(-1) · S(-1) for β(1)(190). These different dynamics reflect conformational changes and less proximal constraints in the isolated heme domain with respect to the dimeric native sGC. We concluded that the α-subunit and the β(1)(191-619) domain exert structural strains on the heme domain. These strains are likely involved in the transmission of the energy and relaxation toward the activated state after Fe(2+)-His bond breaking. This also reveals the heme domain plasticity modulated by the associated domains and subunit.
可溶性鸟苷酸环化酶(sGC)是哺乳动物内源性一氧化氮(NO)受体。这种异二聚体酶的激活和失活机制尚不清楚。为了解决这个问题,可以过表达功能域。我们通过皮秒纳秒吸收光谱法探测了分离的人 sGC 血红素域β(1)(190)中二原子配体 NO 和 CO 的动力学。在硝酰化 sGC 的光激发后,只有在 7.5 ps 内发生 NO 复配。在β(1)(190)中,与 sGC 相反,同时发生 5c-NO 的光解和光氧化,随后发生 NO 复配(7 ps)和反向还原(230 ps 和 2 ns)。在全长 sGC 中,血红素上的 CO 不会发生复配。相反,CO 以快速多相过程(35、171 和 18 ns)与β(1)(190)复配。我们测量了 sGC 的双分子缔合速率 k(on) = 0.075 ± 0.01 × 10(6) M(-1) · S(-1),而β(1)(190)的 k(on) = 0.83 ± 0.1 × 10(6) M(-1) · S(-1)。这些不同的动力学反映了在分离的血红素域中与二聚体天然 sGC 相比,构象变化和较少的近邻约束。我们得出结论,α-亚基和β(1)(191-619)域对血红素域施加结构应变。这些应变可能参与了 Fe(2+)-His 键断裂后向激活态的能量传递和弛豫。这也揭示了血红素域的可塑性由相关结构域和亚基调节。