Suppr超能文献

三维图像定量分析作为组织工程学的一种新形态计量方法。

Three-dimensional image quantification as a new morphometry method for tissue engineering.

机构信息

Laboratory for Cardiovascular Tissue Engineering, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.

出版信息

Tissue Eng Part C Methods. 2012 Jul;18(7):507-16. doi: 10.1089/ten.TEC.2011.0417. Epub 2012 Feb 17.

Abstract

Morphological analysis is an essential step in verifying the success of a tissue engineering strategy where the presence of a desired cellular phenotype must be determined. While morphometry has transitioned from observational grading to computational quantification, established quantitative methods eliminate information by relying on two-dimensional (2D) analysis to describe three-dimensional (3D) niches. In this study, we demonstrate the validity and utility of 3D morphological quantification using two common angiogenesis assays in our fibrin-based in vitro model: (1) the microcarrier bead assay with human mesenchymal stem cells and (2) the rat aortic ring outgrowth assay. The quantification method is based on collecting and segmenting fluorescent confocal z-stacks into 3D models with 3D Slicer, an open-source magnetic resonance imaging/computed tomography analysis program. Data from 3D models are then processed into biologically relevant metrics in MATLAB for statistical analysis. Metrics include descriptive parameters such as vascular network length, volume, number of network segments, and degree of network branching. Our results indicate that 2D measures are significantly different than their 3D counterparts unless the vascular network exhibits anisotropic growth along the plane of imaging. Additionally, the statistical outcomes of 3D morphological quantification agreed with our initial qualitative observations among different test groups. This novel quantification approach generates more spatially accurate and objective measures, representing an important step toward improving the reliability of morphological comparisons.

摘要

形态分析是验证组织工程策略成功的一个重要步骤,其中必须确定所需细胞表型的存在。虽然形态计量学已经从观察性评分转变为计算定量分析,但已建立的定量方法通过依赖二维 (2D) 分析来描述三维 (3D) 小生境而消除了信息。在这项研究中,我们使用我们纤维蛋白体外模型中的两种常见血管生成测定法:(1) 带有人间充质干细胞的微载体珠测定法和 (2) 大鼠主动脉环外生测定法,展示了 3D 形态定量的有效性和实用性。该定量方法基于使用开源磁共振成像/计算机断层扫描分析程序 3D Slicer 将荧光共聚焦 z 堆叠收集和分割成 3D 模型。然后,将 3D 模型中的数据处理成 MATLAB 中的生物学相关指标,以进行统计分析。指标包括血管网络长度、体积、网络段数量和网络分支程度等描述性参数。我们的结果表明,除非血管网络沿着成像平面表现出各向异性生长,否则 2D 测量值与 3D 测量值显著不同。此外,3D 形态定量的统计结果与我们在不同实验组之间的初始定性观察结果一致。这种新的定量方法生成了更具空间准确性和客观性的测量值,是提高形态比较可靠性的重要步骤。

相似文献

4
3D Slicer as an image computing platform for the Quantitative Imaging Network.3D Slicer 作为定量成像网络的图像计算平台。
Magn Reson Imaging. 2012 Nov;30(9):1323-41. doi: 10.1016/j.mri.2012.05.001. Epub 2012 Jul 6.

引用本文的文献

8
Imaging challenges in biomaterials and tissue engineering.生物材料和组织工程中的成像挑战。
Biomaterials. 2013 Sep;34(28):6615-30. doi: 10.1016/j.biomaterials.2013.05.033. Epub 2013 Jun 13.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验