Suppr超能文献

多区域分析纵向 FDG-PET 对阿尔茨海默病的分类。

Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer's disease.

机构信息

Biomedical Image Analysis Group, Department of Computing, Imperial College London, UK.

出版信息

Neuroimage. 2012 Mar;60(1):221-9. doi: 10.1016/j.neuroimage.2011.12.071. Epub 2012 Jan 6.

Abstract

Imaging biomarkers for Alzheimer's disease are desirable for improved diagnosis and monitoring, as well as drug discovery. Automated image-based classification of individual patients could provide valuable diagnostic support for clinicians, when considered alongside cognitive assessment scores. We investigate the value of combining cross-sectional and longitudinal multi-region FDG-PET information for classification, using clinical and imaging data from the Alzheimer's Disease Neuroimaging Initiative. Whole-brain segmentations into 83 anatomically defined regions were automatically generated for baseline and 12-month FDG-PET images. Regional signal intensities were extracted at each timepoint, as well as changes in signal intensity over the follow-up period. Features were provided to a support vector machine classifier. By combining 12-month signal intensities and changes over 12 months, we achieve significantly increased classification performance compared with using any of the three feature sets independently. Based on this combined feature set, we report classification accuracies of 88% between patients with Alzheimer's disease and elderly healthy controls, and 65% between patients with stable mild cognitive impairment and those who subsequently progressed to Alzheimer's disease. We demonstrate that information extracted from serial FDG-PET through regional analysis can be used to achieve state-of-the-art classification of diagnostic groups in a realistic multi-centre setting. This finding may be usefully applied in the diagnosis of Alzheimer's disease, predicting disease course in individuals with mild cognitive impairment, and in the selection of participants for clinical trials.

摘要

用于阿尔茨海默病的成像生物标志物对于改善诊断和监测以及药物发现是可取的。当与认知评估分数结合考虑时,对个体患者的基于图像的自动分类可以为临床医生提供有价值的诊断支持。我们使用来自阿尔茨海默病神经影像学倡议的临床和成像数据,研究了结合横断面和纵向多区域 FDG-PET 信息进行分类的价值。为基线和 12 个月 FDG-PET 图像自动生成了全脑分割成 83 个解剖定义的区域。在每个时间点提取区域信号强度,以及在随访期间信号强度的变化。将特征提供给支持向量机分类器。通过结合 12 个月的信号强度和 12 个月的变化,与使用三个特征集中的任何一个独立相比,我们实现了分类性能的显著提高。基于这个组合特征集,我们报告了阿尔茨海默病患者与老年健康对照组之间的分类准确率为 88%,稳定轻度认知障碍患者与随后发展为阿尔茨海默病患者之间的分类准确率为 65%。我们证明,通过区域分析从连续 FDG-PET 中提取的信息可用于在现实的多中心环境中实现诊断组的最新分类。这一发现可用于阿尔茨海默病的诊断、预测轻度认知障碍患者的疾病进程以及为临床试验选择参与者。

相似文献

引用本文的文献

9
Self-supervised learning of neighborhood embedding for longitudinal MRI.基于邻域嵌入的纵向 MRI 自监督学习。
Med Image Anal. 2022 Nov;82:102571. doi: 10.1016/j.media.2022.102571. Epub 2022 Aug 27.

本文引用的文献

4
Automatic morphometry in Alzheimer's disease and mild cognitive impairment.阿尔茨海默病和轻度认知障碍的自动形态计量学。
Neuroimage. 2011 Jun 15;56(4):2024-37. doi: 10.1016/j.neuroimage.2011.03.014. Epub 2011 Mar 11.
5
Multimodal classification of Alzheimer's disease and mild cognitive impairment.阿尔茨海默病和轻度认知障碍的多模态分类。
Neuroimage. 2011 Apr 1;55(3):856-67. doi: 10.1016/j.neuroimage.2011.01.008. Epub 2011 Jan 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验