Suppr超能文献

应用活性自由基聚合进行核酸递送。

Application of living free radical polymerization for nucleic acid delivery.

机构信息

Department of Bioengineering, University of Washington, Seattle, 98195, United States.

出版信息

Acc Chem Res. 2012 Jul 17;45(7):1089-99. doi: 10.1021/ar200242z. Epub 2012 Jan 13.

Abstract

Therapeutic gene delivery can alter protein function either through the replacement of nonfunctional genes to restore cellular health or through RNA interference (RNAi) to mask mutated and harmful genes. Researchers have investigated a range of nucleic acid-based therapeutics as potential treatments for hereditary, acquired, and infectious diseases. Candidate drugs include plasmids that induce gene expression and small, interfering RNAs (siRNAs) that silence target genes. Because of their self-assembly with nucleic acids into virus-sized nanoparticles and high transfection efficiency in vitro, cationic polymers have been extensively studied for nucleic acid delivery applications, but toxicity and particle stability have limited the clinical applications of these systems. The advent of living free radical polymerization has improved the quality, control, and reproducibility of these synthesized materials. This process yields well-defined, narrowly disperse materials with designed architectures and molecular weights. As a result, researchers can study the effects of polymer architecture and molecular weight on transfection efficiency and cytotoxicity, which will improve the design of next-generation vectors. In this Account, we review findings from structure-function studies that have elucidated key design motifs necessary for the development of effective nucleic acid vectors. Researchers have used robust methods such as atom transfer radical polymerization (ATRP), reverse addition-fragmentation chain transfer polymerization (RAFT), and ring-opening metastasis polymerization (ROMP) to engineer materials that enhance extracellular stability and cellular specificity and decrease toxicity. In addition, we discuss polymers that are biodegradable, form supramolecular structures, target specific cells, or facilitate endosomal release. Finally, we describe promising materials with a range of in vivo applications from pulmonary gene delivery to DNA vaccines.

摘要

治疗性基因传递可以通过替换无功能基因来恢复细胞健康,或者通过 RNA 干扰 (RNAi) 来掩盖突变和有害基因,从而改变蛋白质功能。研究人员已经研究了一系列基于核酸的治疗方法,作为遗传性、获得性和传染病的潜在治疗方法。候选药物包括诱导基因表达的质粒和沉默靶基因的小干扰 RNA (siRNA)。由于它们可以与核酸自组装成病毒大小的纳米颗粒,并且在体外具有高转染效率,因此阳离子聚合物已被广泛研究用于核酸传递应用,但毒性和颗粒稳定性限制了这些系统的临床应用。游离基聚合的出现提高了这些合成材料的质量、控制和重现性。该过程产生具有设计结构和分子量的定义明确、窄分散的材料。因此,研究人员可以研究聚合物结构和分子量对转染效率和细胞毒性的影响,从而改进下一代载体的设计。在本报告中,我们回顾了结构-功能研究的发现,这些发现阐明了开发有效核酸载体所需的关键设计主题。研究人员使用了强大的方法,如原子转移自由基聚合 (ATRP)、反向加成-片段转移聚合 (RAFT) 和开环转移聚合 (ROMP),来设计增强细胞外稳定性和细胞特异性、降低毒性的材料。此外,我们还讨论了可生物降解、形成超分子结构、靶向特定细胞或促进内体释放的聚合物。最后,我们描述了具有一系列体内应用的有前途的材料,从肺部基因传递到 DNA 疫苗。

相似文献

1
Application of living free radical polymerization for nucleic acid delivery.
Acc Chem Res. 2012 Jul 17;45(7):1089-99. doi: 10.1021/ar200242z. Epub 2012 Jan 13.
2
A novel environment-sensitive biodegradable polydisulfide with protonatable pendants for nucleic acid delivery.
J Control Release. 2007 Jul 31;120(3):250-8. doi: 10.1016/j.jconrel.2007.05.014. Epub 2007 May 21.
3
Well-Defined Cationic N-[3-(Dimethylamino)propyl]methacrylamide Hydrochloride-Based (Co)polymers for siRNA Delivery.
Biomacromolecules. 2018 Jan 8;19(1):209-221. doi: 10.1021/acs.biomac.7b01475. Epub 2017 Dec 20.
4
Toward living radical polymerization.
Acc Chem Res. 2008 Sep;41(9):1133-42. doi: 10.1021/ar800075n. Epub 2008 Aug 14.
5
Peptide vectors for the nonviral delivery of nucleic acids.
Acc Chem Res. 2012 Jul 17;45(7):1048-56. doi: 10.1021/ar2002304. Epub 2012 Mar 28.
6
Mixing-sequence-dependent nucleic acid complexation and gene transfer efficiency by polyethylenimine.
Biomater Sci. 2015 Jul;3(7):1124-33. doi: 10.1039/c5bm00041f. Epub 2015 Mar 18.
7
Cationic, amphiphilic copolymer micelles as nucleic acid carriers for enhanced transfection in rat spinal cord.
Acta Biomater. 2016 Apr 15;35:98-108. doi: 10.1016/j.actbio.2016.02.013. Epub 2016 Feb 9.
9
Recent progress of non-linear topological structure polymers: synthesis, and gene delivery.
J Nanobiotechnology. 2024 Jan 27;22(1):40. doi: 10.1186/s12951-024-02299-6.
10
Synthesis and characterization of polyaspartamide copolymers obtained by ATRP for nucleic acid delivery.
Int J Pharm. 2014 May 15;466(1-2):246-57. doi: 10.1016/j.ijpharm.2014.03.026. Epub 2014 Mar 12.

引用本文的文献

1
Stimuli-sensitive polymer prodrug nanocarriers by reversible-deactivation radical polymerization.
Chem Soc Rev. 2024 Jun 17;53(12):6511-6567. doi: 10.1039/d2cs01060g.
2
Radiation-induced curcumin release from curcumin-chitosan polymer films.
RSC Adv. 2020 Apr 23;10(27):16110-16117. doi: 10.1039/d0ra00144a. eCollection 2020 Apr 21.
3
Hydrophilic Random Cationic Copolymers as Polyplex-Formation Vectors for DNA.
Materials (Basel). 2022 Apr 4;15(7):2650. doi: 10.3390/ma15072650.
8
Dual Polymerizations: Untapped Potential for Biomaterials.
Adv Healthc Mater. 2019 Mar;8(6):e1800861. doi: 10.1002/adhm.201800861. Epub 2018 Oct 21.
9
Properties and applications of nanoparticle/microparticle conveyors with adjuvant characteristics suitable for oral vaccination.
Int J Nanomedicine. 2018 May 21;13:2973-2987. doi: 10.2147/IJN.S154743. eCollection 2018.
10
Cationic polymers for non-viral gene delivery to human T cells.
J Control Release. 2018 Jul 28;282:140-147. doi: 10.1016/j.jconrel.2018.02.043. Epub 2018 Mar 5.

本文引用的文献

1
Cathepsin B-sensitive polymers for compartment-specific degradation and nucleic acid release.
J Control Release. 2012 Feb 10;157(3):445-54. doi: 10.1016/j.jconrel.2011.10.016. Epub 2011 Oct 20.
2
Reducible HPMA-co-oligolysine copolymers for nucleic acid delivery.
Int J Pharm. 2012 May 1;427(1):113-22. doi: 10.1016/j.ijpharm.2011.08.015. Epub 2011 Aug 27.
3
HPMA-oligolysine copolymers for gene delivery: optimization of peptide length and polymer molecular weight.
J Control Release. 2011 Oct 30;155(2):303-11. doi: 10.1016/j.jconrel.2011.07.009. Epub 2011 Jul 14.
5
Synthesis of folate-functionalized RAFT polymers for targeted siRNA delivery.
Biomacromolecules. 2011 Jul 11;12(7):2708-14. doi: 10.1021/bm200485b. Epub 2011 Jun 10.
7
Well-controlled cationic water-soluble phospholipid polymer-DNA nanocomplexes for gene delivery.
Bioconjug Chem. 2011 Jun 15;22(6):1228-38. doi: 10.1021/bc2001159. Epub 2011 May 13.
8
The effect of polymer architecture, composition, and molecular weight on the properties of glycopolymer-based non-viral gene delivery systems.
Biomaterials. 2011 Aug;32(22):5279-90. doi: 10.1016/j.biomaterials.2011.03.082. Epub 2011 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验