Department of Bioengineering, University of Washington, Seattle, 98195, United States.
Acc Chem Res. 2012 Jul 17;45(7):1089-99. doi: 10.1021/ar200242z. Epub 2012 Jan 13.
Therapeutic gene delivery can alter protein function either through the replacement of nonfunctional genes to restore cellular health or through RNA interference (RNAi) to mask mutated and harmful genes. Researchers have investigated a range of nucleic acid-based therapeutics as potential treatments for hereditary, acquired, and infectious diseases. Candidate drugs include plasmids that induce gene expression and small, interfering RNAs (siRNAs) that silence target genes. Because of their self-assembly with nucleic acids into virus-sized nanoparticles and high transfection efficiency in vitro, cationic polymers have been extensively studied for nucleic acid delivery applications, but toxicity and particle stability have limited the clinical applications of these systems. The advent of living free radical polymerization has improved the quality, control, and reproducibility of these synthesized materials. This process yields well-defined, narrowly disperse materials with designed architectures and molecular weights. As a result, researchers can study the effects of polymer architecture and molecular weight on transfection efficiency and cytotoxicity, which will improve the design of next-generation vectors. In this Account, we review findings from structure-function studies that have elucidated key design motifs necessary for the development of effective nucleic acid vectors. Researchers have used robust methods such as atom transfer radical polymerization (ATRP), reverse addition-fragmentation chain transfer polymerization (RAFT), and ring-opening metastasis polymerization (ROMP) to engineer materials that enhance extracellular stability and cellular specificity and decrease toxicity. In addition, we discuss polymers that are biodegradable, form supramolecular structures, target specific cells, or facilitate endosomal release. Finally, we describe promising materials with a range of in vivo applications from pulmonary gene delivery to DNA vaccines.
治疗性基因传递可以通过替换无功能基因来恢复细胞健康,或者通过 RNA 干扰 (RNAi) 来掩盖突变和有害基因,从而改变蛋白质功能。研究人员已经研究了一系列基于核酸的治疗方法,作为遗传性、获得性和传染病的潜在治疗方法。候选药物包括诱导基因表达的质粒和沉默靶基因的小干扰 RNA (siRNA)。由于它们可以与核酸自组装成病毒大小的纳米颗粒,并且在体外具有高转染效率,因此阳离子聚合物已被广泛研究用于核酸传递应用,但毒性和颗粒稳定性限制了这些系统的临床应用。游离基聚合的出现提高了这些合成材料的质量、控制和重现性。该过程产生具有设计结构和分子量的定义明确、窄分散的材料。因此,研究人员可以研究聚合物结构和分子量对转染效率和细胞毒性的影响,从而改进下一代载体的设计。在本报告中,我们回顾了结构-功能研究的发现,这些发现阐明了开发有效核酸载体所需的关键设计主题。研究人员使用了强大的方法,如原子转移自由基聚合 (ATRP)、反向加成-片段转移聚合 (RAFT) 和开环转移聚合 (ROMP),来设计增强细胞外稳定性和细胞特异性、降低毒性的材料。此外,我们还讨论了可生物降解、形成超分子结构、靶向特定细胞或促进内体释放的聚合物。最后,我们描述了具有一系列体内应用的有前途的材料,从肺部基因传递到 DNA 疫苗。