Suppr超能文献

阿特拉津 Fe₃O₄@SiO₂ 磁性分子印迹聚合物的合成、性质及应用研究。

Synthesis, properties and application research of atrazine Fe₃O₄@SiO₂ magnetic molecularly imprinted polymer.

机构信息

School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.

出版信息

Environ Sci Pollut Res Int. 2012 Jul;19(6):2271-80. doi: 10.1007/s11356-011-0732-9. Epub 2012 Jan 14.

Abstract

INTRODUCTION

Magnetic Fe3O4 nanoparticles were prepared by coprecipitation and then were coated with SiO2 on the surface.

MATERIALS AND METHODS

Fe3O4@SiO2 composite microspheres were modified by KH570. Using molecular imprinting technology, atrazine magnetic molecularly imprinted polymer was prepared by using atrazine as template molecule, methacrylic acid as functional monomer and ethylene glycol dimethacrylate as cross-linkers. The morphology, composition and magnetic properties of magnetic nanoparticles were characterized. The recognition selectivity of polymer was studied for template molecule and simulation by UV spectrophotometry. The adsorption properties and selectivity ability were analyzed by Scatchard analysis.

RESULTS

Scatchard linear regression analysis indicated that there are two binding sites of the target molecules. The magnetic molecularly imprinted polymer has been applied to the analysis of atrazine in real samples.

CONCLUSION

The results show that: the recovery rates and the relative standard deviation were 94.0∼98.7% and 2.1∼4.0% in corn, the recovery rates and the relative standard deviation were 88.7∼93.5% and 2.8∼7.2% in water.

摘要

简介

通过共沉淀法制备了磁性 Fe3O4 纳米粒子,然后在表面包覆 SiO2。

材料与方法

采用 KH570 对 Fe3O4@SiO2 复合微球进行改性。以阿特拉津为模板分子,甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂,采用分子印迹技术制备阿特拉津磁性分子印迹聚合物。对磁性纳米粒子的形貌、组成和磁性能进行了表征。通过紫外分光光度法对模板分子和模拟物进行了聚合物的识别选择性研究。通过 Scatchard 分析对吸附性能和选择性能力进行了分析。

结果

Scatchard 线性回归分析表明,目标分子有两个结合位点。磁性分子印迹聚合物已应用于实际样品中阿特拉津的分析。

结论

结果表明:在玉米中,回收率和相对标准偏差分别为 94.0∼98.7%和 2.1∼4.0%;在水中,回收率和相对标准偏差分别为 88.7∼93.5%和 2.8∼7.2%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验