Suppr超能文献

海马体计算微电路模型记忆回忆表现的定量研究。

Quantitative investigation of memory recall performance of a computational microcircuit model of the hippocampus.

作者信息

Andreakos Nikolaos, Yue Shigang, Cutsuridis Vassilis

机构信息

School of Computer Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK.

Lincoln Sleep Research Center, University of Lincoln, Lincoln, LN6 7TS, UK.

出版信息

Brain Inform. 2021 May 8;8(1):9. doi: 10.1186/s40708-021-00131-7.

Abstract

Memory, the process of encoding, storing, and maintaining information over time to influence future actions, is very important in our lives. Losing it, it comes with a great cost. Deciphering the biophysical mechanisms leading to recall improvement should thus be of outmost importance. In this study, we embarked on the quest to improve computationally the recall performance of a bio-inspired microcircuit model of the mammalian hippocampus, a brain region responsible for the storage and recall of short-term declarative memories. The model consisted of excitatory and inhibitory cells. The cell properties followed closely what is currently known from the experimental neurosciences. Cells' firing was timed to a theta oscillation paced by two distinct neuronal populations exhibiting highly regular bursting activity, one tightly coupled to the trough and the other to the peak of theta. An excitatory input provided to excitatory cells context and timing information for retrieval of previously stored memory patterns. Inhibition to excitatory cells acted as a non-specific global threshold machine that removed spurious activity during recall. To systematically evaluate the model's recall performance against stored patterns, pattern overlap, network size, and active cells per pattern, we selectively modulated feedforward and feedback excitatory and inhibitory pathways targeting specific excitatory and inhibitory cells. Of the different model variations (modulated pathways) tested, 'model 1' recall quality was excellent across all conditions. 'Model 2' recall was the worst. The number of 'active cells' representing a memory pattern was the determining factor in improving the model's recall performance regardless of the number of stored patterns and overlap between them. As 'active cells per pattern' decreased, the model's memory capacity increased, interference effects between stored patterns decreased, and recall quality improved.

摘要

记忆是对信息进行编码、存储并随时间维持以影响未来行为的过程,在我们的生活中非常重要。失去记忆会付出巨大代价。因此,破解导致记忆改善的生物物理机制至关重要。在本研究中,我们着手通过计算来提高一个受生物启发的哺乳动物海马体微电路模型的记忆性能,海马体是大脑中负责短期陈述性记忆存储和回忆的区域。该模型由兴奋性和抑制性细胞组成。细胞特性与当前实验神经科学所了解的情况密切相符。细胞的放电与由两个不同神经元群体设定节奏的θ振荡同步,这两个群体表现出高度规则的爆发活动,一个与θ波的波谷紧密耦合,另一个与θ波的波峰紧密耦合。提供给兴奋性细胞的兴奋性输入为检索先前存储的记忆模式提供背景和时间信息。对兴奋性细胞的抑制作用就像一个非特异性全局阈值机制,在回忆过程中消除虚假活动。为了系统地评估该模型针对存储模式、模式重叠、网络规模以及每个模式的活跃细胞的记忆性能,我们选择性地调节了针对特定兴奋性和抑制性细胞的前馈和反馈兴奋性及抑制性通路。在所测试的不同模型变体(调节通路)中,“模型1”在所有条件下的记忆质量都非常出色。“模型2”的记忆效果最差。无论存储模式的数量及其之间的重叠情况如何,代表记忆模式的“活跃细胞”数量是提高模型记忆性能的决定性因素。随着“每个模式的活跃细胞”数量减少,模型的记忆容量增加,存储模式之间的干扰效应降低,记忆质量提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11c1/8106564/e3d540b7cf7a/40708_2021_131_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验