Burlina P, Freund D E, Dupas B, Bressler N
Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:3962-6. doi: 10.1109/IEMBS.2011.6090984.
We describe a novel approach for screening retinal imagery to detect evidence of abnormalities. In this paper, we focus our efforts on age-related macular degeneration (AMD), a pathology that may often go undetected in the early or intermediate stages, and can lead to a neovascular form often resulting in blindness, if untreated. Our strategy for retinal anomaly detection is to employ a single class classifier applied to fundus imagery. We use a multiresolution locally-adaptive scheme that identifies both normal and anomalous regions within the retina. We do this by using a hybrid parametric/non-parametric characterization of the support of the probability distribution of normal retinal tissue in color and intensity feature space. We apply this approach to screen for evidence of AMD on a dataset of 66 healthy and pathological cases and found a detection sensitivity and specificity of 95% and 96%.
我们描述了一种用于筛查视网膜图像以检测异常证据的新方法。在本文中,我们将重点放在年龄相关性黄斑变性(AMD)上,这种病症在早期或中期往往难以被发现,如果不治疗,可能会发展为新生血管形式,常常导致失明。我们用于视网膜异常检测的策略是将单类分类器应用于眼底图像。我们使用一种多分辨率局部自适应方案来识别视网膜内的正常区域和异常区域。我们通过对正常视网膜组织在颜色和强度特征空间中的概率分布支持进行混合参数/非参数表征来实现这一点。我们将这种方法应用于一个包含66例健康和病理病例的数据集,以筛查AMD的证据,发现检测灵敏度和特异性分别为95%和96%。