Suppr超能文献

sva 包用于去除高通量实验中的批次效应和其他不需要的变异。

The sva package for removing batch effects and other unwanted variation in high-throughput experiments.

机构信息

Department of Biostatistics, JHU Bloomberg School of Public Health, Baltimore, MD, USA.

出版信息

Bioinformatics. 2012 Mar 15;28(6):882-3. doi: 10.1093/bioinformatics/bts034. Epub 2012 Jan 17.

Abstract

Heterogeneity and latent variables are now widely recognized as major sources of bias and variability in high-throughput experiments. The most well-known source of latent variation in genomic experiments are batch effects-when samples are processed on different days, in different groups or by different people. However, there are also a large number of other variables that may have a major impact on high-throughput measurements. Here we describe the sva package for identifying, estimating and removing unwanted sources of variation in high-throughput experiments. The sva package supports surrogate variable estimation with the sva function, direct adjustment for known batch effects with the ComBat function and adjustment for batch and latent variables in prediction problems with the fsva function.

摘要

异质性和潜在变量现在被广泛认为是高通量实验中偏倚和可变性的主要来源。基因组实验中潜在变化的最著名来源是批次效应——当样本在不同的日子、不同的组或由不同的人处理时。然而,还有大量其他变量可能对高通量测量产生重大影响。在这里,我们描述了 sva 包,用于识别、估计和去除高通量实验中的不必要变异源。sva 包支持使用 sva 函数进行替代变量估计,使用 ComBat 函数直接调整已知的批次效应,以及使用 fsva 函数在预测问题中调整批次和潜在变量。

相似文献

1
The sva package for removing batch effects and other unwanted variation in high-throughput experiments.
Bioinformatics. 2012 Mar 15;28(6):882-3. doi: 10.1093/bioinformatics/bts034. Epub 2012 Jan 17.
2
svaseq: removing batch effects and other unwanted noise from sequencing data.
Nucleic Acids Res. 2014 Dec 1;42(21):e161. doi: 10.1093/nar/gku864. Epub 2014 Oct 7.
3
Removing batch effects for prediction problems with frozen surrogate variable analysis.
PeerJ. 2014 Sep 23;2:e561. doi: 10.7717/peerj.561. eCollection 2014.
4
Practical impacts of genomic data "cleaning" on biological discovery using surrogate variable analysis.
BMC Bioinformatics. 2015 Nov 6;16:372. doi: 10.1186/s12859-015-0808-5.
5
Blind estimation and correction of microarray batch effect.
PLoS One. 2020 Apr 9;15(4):e0231446. doi: 10.1371/journal.pone.0231446. eCollection 2020.
6
7
V-SVA: an R Shiny application for detecting and annotating hidden sources of variation in single-cell RNA-seq data.
Bioinformatics. 2020 Jun 1;36(11):3582-3584. doi: 10.1093/bioinformatics/btaa128.
8
Overcoming the impacts of two-step batch effect correction on gene expression estimation and inference.
Biostatistics. 2023 Jul 14;24(3):635-652. doi: 10.1093/biostatistics/kxab039.
9
Preserving biological heterogeneity with a permuted surrogate variable analysis for genomics batch correction.
Bioinformatics. 2014 Oct;30(19):2757-63. doi: 10.1093/bioinformatics/btu375. Epub 2014 Jun 6.
10
The practical effect of batch on genomic prediction.
Stat Appl Genet Mol Biol. 2012;11(3):Article 10. doi: 10.1515/1544-6115.1766.

引用本文的文献

1
Establishing a glycolysis-linked multigene prognostic signature in lung adenocarcinoma: a multicenter integrative approach.
J Thorac Dis. 2025 Aug 31;17(8):6214-6228. doi: 10.21037/jtd-2025-1438. Epub 2025 Aug 28.
5
Epigenome-wide association study of placental co-methylated regions in newborns for prenatal opioid exposure.
Environ Epigenet. 2025 Sep 4;11(1):dvaf021. doi: 10.1093/eep/dvaf021. eCollection 2025.
6
Analysis of immune cell infiltration landscape and identification of diagnostic biomarkers in ankylosing spondylitis.
APL Bioeng. 2025 Sep 9;9(3):036117. doi: 10.1063/5.0252297. eCollection 2025 Sep.
7
Epigenetic signatures of phthalate exposure and potential risks: a DNA methylation analysis using Infinium MethylationEPIC BeadChip.
Environ Epigenet. 2025 Jun 18;11(1):dvaf020. doi: 10.1093/eep/dvaf020. eCollection 2025.
9
Integrative gene and isoform co-expression networks reveal regulatory rewiring in stress-related psychiatric disorders.
iScience. 2025 Aug 13;28(9):113342. doi: 10.1016/j.isci.2025.113342. eCollection 2025 Sep 19.

本文引用的文献

1
Independent surrogate variable analysis to deconvolve confounding factors in large-scale microarray profiling studies.
Bioinformatics. 2011 Jun 1;27(11):1496-505. doi: 10.1093/bioinformatics/btr171. Epub 2011 Apr 6.
2
Tackling the widespread and critical impact of batch effects in high-throughput data.
Nat Rev Genet. 2010 Oct;11(10):733-9. doi: 10.1038/nrg2825. Epub 2010 Sep 14.
3
Frozen robust multiarray analysis (fRMA).
Biostatistics. 2010 Apr;11(2):242-53. doi: 10.1093/biostatistics/kxp059. Epub 2010 Jan 22.
4
A general framework for multiple testing dependence.
Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18718-23. doi: 10.1073/pnas.0808709105. Epub 2008 Nov 24.
5
The environmental contribution to gene expression profiles.
Nat Rev Genet. 2008 Aug;9(8):575-81. doi: 10.1038/nrg2383.
6
Capturing heterogeneity in gene expression studies by surrogate variable analysis.
PLoS Genet. 2007 Sep;3(9):1724-35. doi: 10.1371/journal.pgen.0030161. Epub 2007 Aug 1.
7
Linear models and empirical bayes methods for assessing differential expression in microarray experiments.
Stat Appl Genet Mol Biol. 2004;3:Article3. doi: 10.2202/1544-6115.1027. Epub 2004 Feb 12.
8
Adjusting batch effects in microarray expression data using empirical Bayes methods.
Biostatistics. 2007 Jan;8(1):118-27. doi: 10.1093/biostatistics/kxj037. Epub 2006 Apr 21.
9
Genetics of gene expression surveyed in maize, mouse and man.
Nature. 2003 Mar 20;422(6929):297-302. doi: 10.1038/nature01434.
10
Genetic dissection of transcriptional regulation in budding yeast.
Science. 2002 Apr 26;296(5568):752-5. doi: 10.1126/science.1069516. Epub 2002 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验