Suppr超能文献

酿酒酵母细胞壁在晚期全身炎症期间差异调节固有免疫和葡萄糖代谢。

Cell walls of Saccharomyces cerevisiae differentially modulated innate immunity and glucose metabolism during late systemic inflammation.

机构信息

Department of Animal Science, McGill University, Quebec, Canada.

出版信息

PLoS One. 2012;7(1):e30323. doi: 10.1371/journal.pone.0030323. Epub 2012 Jan 17.

Abstract

BACKGROUND

Salmonella causes acute systemic inflammation by using its virulence factors to invade the intestinal epithelium. But, prolonged inflammation may provoke severe body catabolism and immunological diseases. Salmonella has become more life-threatening due to emergence of multiple-antibiotic resistant strains. Mannose-rich oligosaccharides (MOS) from cells walls of Saccharomyces cerevisiae have shown to bind mannose-specific lectin of Gram-negative bacteria including Salmonella, and prevent their adherence to intestinal epithelial cells. However, whether MOS may potentially mitigate systemic inflammation is not investigated yet. Moreover, molecular events underlying innate immune responses and metabolic activities during late inflammation, in presence or absence of MOS, are unknown.

METHODS AND PRINCIPAL FINDINGS

Using a Salmonella LPS-induced systemic inflammation chicken model and microarray analysis, we investigated the effects of MOS and virginiamycin (VIRG, a sub-therapeutic antibiotic) on innate immunity and glucose metabolism during late inflammation. Here, we demonstrate that MOS and VIRG modulated innate immunity and metabolic genes differently. Innate immune responses were principally mediated by intestinal IL-3, but not TNF-α, IL-1 or IL-6, whereas glucose mobilization occurred through intestinal gluconeogenesis only. MOS inherently induced IL-3 expression in control hosts. Consequent to LPS challenge, IL-3 induction in VIRG hosts but not differentially expressed in MOS hosts revealed that MOS counteracted LPS's detrimental inflammatory effects. Metabolic pathways are built to elucidate the mechanisms by which VIRG host's higher energy requirements were met: including gene up-regulations for intestinal gluconeogenesis (PEPCK) and liver glycolysis (ENO2), and intriguingly liver fatty acid synthesis through ATP citrate synthase (CS) down-regulation and ATP citrate lyase (ACLY) and malic enzyme (ME) up-regulations. However, MOS host's lower energy demands were sufficiently met through TCA citrate-derived energy, as indicated by CS up-regulation.

CONCLUSIONS

MOS terminated inflammation earlier than VIRG and reduced glucose mobilization, thus representing a novel biological strategy to alleviate Salmonella-induced systemic inflammation in human and animal hosts.

摘要

背景

沙门氏菌通过其毒力因子入侵肠道上皮细胞引起急性全身炎症。但是,长期的炎症可能会引发严重的身体分解代谢和免疫性疾病。由于出现了多种抗生素耐药菌株,沙门氏菌变得更加致命。来自酿酒酵母细胞壁的甘露糖丰富的寡糖(MOS)已显示出与包括沙门氏菌在内的革兰氏阴性菌的甘露糖特异性凝集素结合,并阻止它们附着在肠道上皮细胞上。然而,MOS 是否可能潜在地减轻全身炎症尚未得到研究。此外,在存在或不存在 MOS 的情况下,固有免疫反应和晚期炎症期间代谢活动的分子事件尚不清楚。

方法和主要发现

使用沙门氏菌 LPS 诱导的全身炎症鸡模型和微阵列分析,我们研究了 MOS 和维吉尼亚霉素(VIRG,一种亚治疗性抗生素)对晚期炎症期间固有免疫和葡萄糖代谢的影响。在这里,我们证明 MOS 和 VIRG 以不同的方式调节固有免疫和代谢基因。固有免疫反应主要由肠道 IL-3 介导,但不是 TNF-α、IL-1 或 IL-6,而葡萄糖动员仅通过肠道糖异生发生。MOS 内在地诱导对照宿主中的 IL-3 表达。继 LPS 挑战后,VIRG 宿主中的 IL-3 诱导而 MOS 宿主中未差异表达表明 MOS 拮抗了 LPS 的有害炎症作用。代谢途径的建立是为了阐明 VIRG 宿主更高能量需求得到满足的机制:包括肠道糖异生(PEPCK)和肝脏糖酵解(ENO2)的基因上调,以及通过 ATP 柠檬酸合酶(CS)下调和 ATP 柠檬酸裂解酶(ACLY)和苹果酸酶(ME)上调的肝脏脂肪酸合成,令人好奇的是。然而,MOS 宿主通过 TCA 柠檬酸衍生的能量满足了较低的能量需求,这表明 CS 上调。

结论

MOS 比 VIRG 更早地终止炎症并减少葡萄糖动员,因此代表了一种减轻人类和动物宿主中沙门氏菌诱导的全身炎症的新型生物学策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa03/3260269/3396d66372ef/pone.0030323.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验