Laboratoire de Neurophysiologie et de Biomécanique du Mouvement, Université Libre de Bruxelles, CP 168, 50 Avenue F Roosevelt, 1050 Brussels, Belgium.
Neural Plast. 2012;2012:375148. doi: 10.1155/2012/375148. Epub 2012 Jan 4.
Success in locomotor rehabilitation programs can be improved with the use of brain-computer interfaces (BCIs). Although a wealth of research has demonstrated that locomotion is largely controlled by spinal mechanisms, the brain is of utmost importance in monitoring locomotor patterns and therefore contains information regarding central pattern generation functioning. In addition, there is also a tight coordination between the upper and lower limbs, which can also be useful in controlling locomotion. The current paper critically investigates different approaches that are applicable to this field: the use of electroencephalogram (EEG), upper limb electromyogram (EMG), or a hybrid of the two neurophysiological signals to control assistive exoskeletons used in locomotion based on programmable central pattern generators (PCPGs) or dynamic recurrent neural networks (DRNNs). Plantar surface tactile stimulation devices combined with virtual reality may provide the sensation of walking while in a supine position for use of training brain signals generated during locomotion. These methods may exploit mechanisms of brain plasticity and assist in the neurorehabilitation of gait in a variety of clinical conditions, including stroke, spinal trauma, multiple sclerosis, and cerebral palsy.
使用脑机接口(BCIs)可以提高运动康复计划的成功率。虽然大量研究表明运动主要由脊髓机制控制,但大脑在监测运动模式方面至关重要,因此包含有关中枢模式生成功能的信息。此外,上下肢之间也存在紧密的协调,这对于控制运动也很有用。本文批判性地研究了适用于该领域的不同方法:使用脑电图(EEG)、上肢肌电图(EMG)或两者的混合神经生理信号来控制基于可编程中枢模式发生器(PCPG)或动态递归神经网络(DRNN)的辅助外骨骼进行运动。与虚拟现实结合的足底表面触觉刺激设备可以在仰卧位时提供行走的感觉,从而用于训练运动时产生的大脑信号。这些方法可以利用大脑可塑性的机制,并有助于在各种临床情况下进行步态的神经康复,包括中风、脊髓损伤、多发性硬化症和脑瘫。