Suppr超能文献

分子动力学模拟揭示了翻译后棕榈酰修饰与膜中视紫红质的特定相互作用。

Molecular dynamics simulations reveal specific interactions of post-translational palmitoyl modifications with rhodopsin in membranes.

机构信息

Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, D-06120 Halle/Saale, Germany.

出版信息

J Am Chem Soc. 2012 Mar 7;134(9):4324-31. doi: 10.1021/ja2108382. Epub 2012 Feb 22.

Abstract

We present a detailed analysis of the behavior of the highly flexible post-translational lipid modifications of rhodopsin from multiple-microsecond all-atom molecular dynamics simulations. Rhodopsin was studied in a realistic membrane environment that includes cholesterol, as well as saturated and polyunsaturated lipids with phosphocholine and phosphoethanolamine headgroups. The simulation reveals striking differences between the palmitoylations at Cys322 and Cys323 as well as between the palmitoyl chains and the neighboring lipids. Notably the palmitoyl group at Cys322 shows considerably greater contact with helix H1 of rhodopsin, yielding frequent chain upturns with longer reorientational correlation times, and relatively low order parameters. While the palmitoylation at Cys323 makes fewer protein contacts and has increased order compared to Cys322, it nevertheless exhibits greater flexibility with smaller order parameters than the stearoyl chains of the surrounding lipids. The dynamical structure of the palmitoylations-as well as their extensive fluctuations-suggests a complex function for the post-translational modifications in rhodopsin and potentially other G protein-coupled receptors, going beyond their role as membrane anchoring elements. Rather, we propose that the palmitoylation at Cys323 has a potential role as a lipid anchor, whereas the palmitoyl-protein interaction observed for Cys322 suggests a more specific interaction that affects the stability of the dark state of rhodopsin.

摘要

我们从多微秒全原子分子动力学模拟中对高度灵活的视紫红质翻译后脂质修饰的行为进行了详细分析。视紫红质在包含胆固醇以及带有磷酸胆碱和磷酸乙醇胺头基的饱和和多不饱和脂质的真实膜环境中进行了研究。该模拟揭示了 Cys322 和 Cys323 处的棕榈酰化以及棕榈酰链与相邻脂质之间的惊人差异。值得注意的是,Cys322 处的棕榈酰基与视紫红质的 H1 螺旋有相当大的接触,导致频繁的链向上翻转和较长的重新取向相关时间,以及相对较低的有序参数。虽然 Cys323 处的棕榈酰化与 Cys322 相比与蛋白质的接触较少,有序性增加,但与周围脂质的硬脂酰链相比,它具有更大的灵活性和较小的有序参数。棕榈酰化的动力学结构及其广泛的波动表明,翻译后修饰对视紫红质和潜在的其他 G 蛋白偶联受体具有复杂的功能,超出了其作为膜锚定元件的作用。相反,我们提出 Cys323 的棕榈酰化可能具有作为脂质锚的潜在作用,而 Cys322 观察到的棕榈酰-蛋白相互作用表明存在更具体的相互作用,影响视紫红质的暗态稳定性。

相似文献

6
The role of the lipid matrix for structure and function of the GPCR rhodopsin.
Biochim Biophys Acta. 2012 Feb;1818(2):234-40. doi: 10.1016/j.bbamem.2011.08.034. Epub 2011 Sep 5.
7
A role for direct interactions in the modulation of rhodopsin by omega-3 polyunsaturated lipids.
Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):4888-93. doi: 10.1073/pnas.0508352103. Epub 2006 Mar 17.
8
Palmitoylation is a prerequisite for dimerization-dependent raftophilicity of rhodopsin.
J Biol Chem. 2017 Sep 15;292(37):15321-15328. doi: 10.1074/jbc.M117.804880. Epub 2017 Jul 26.
9
Molecular dynamics simulations of rhodopsin in different one-component lipid bilayers.
J Phys Chem B. 2007 Jun 28;111(25):7052-63. doi: 10.1021/jp0707788. Epub 2007 May 27.
10
The structure of polyunsaturated lipid bilayers important for rhodopsin function: a neutron diffraction study.
Biophys J. 2006 Jan 1;90(1):L04-6. doi: 10.1529/biophysj.105.071712. Epub 2005 Oct 28.

引用本文的文献

1
Caveolin assemblies displace one bilayer leaflet to organize and bend membranes.
Proc Natl Acad Sci U S A. 2025 May 20;122(20):e2417024122. doi: 10.1073/pnas.2417024122. Epub 2025 May 13.
2
Caveolin assemblies displace one bilayer leaflet to organize and bend membranes.
bioRxiv. 2025 Apr 3:2024.08.28.610209. doi: 10.1101/2024.08.28.610209.
3
Posttranslational modifications of proteins in diseased retina.
Front Cell Neurosci. 2023 Mar 30;17:1150220. doi: 10.3389/fncel.2023.1150220. eCollection 2023.
4
Quantum Mechanical and Molecular Mechanics Modeling of Membrane-Embedded Rhodopsins.
J Membr Biol. 2019 Oct;252(4-5):425-449. doi: 10.1007/s00232-019-00095-0. Epub 2019 Sep 30.
5
Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation.
Chem Rev. 2019 May 8;119(9):6086-6161. doi: 10.1021/acs.chemrev.8b00608. Epub 2019 Apr 12.
7
Protein post-translational modifications: prediction tools and molecular modeling.
Comput Struct Biotechnol J. 2017 Mar 31;15:307-319. doi: 10.1016/j.csbj.2017.03.004. eCollection 2017.
8
Revealing the Mechanisms of Protein Disorder and N-Glycosylation in CD44-Hyaluronan Binding Using Molecular Simulation.
Front Immunol. 2015 Jun 16;6:305. doi: 10.3389/fimmu.2015.00305. eCollection 2015.
9
The physiology of protein S-acylation.
Physiol Rev. 2015 Apr;95(2):341-76. doi: 10.1152/physrev.00032.2014.
10
A mechanistic role of Helix 8 in GPCRs: Computational modeling of the dopamine D2 receptor interaction with the GIPC1-PDZ-domain.
Biochim Biophys Acta. 2015 Apr;1848(4):976-83. doi: 10.1016/j.bbamem.2014.12.002. Epub 2015 Jan 12.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Structure of the human histamine H1 receptor complex with doxepin.
Nature. 2011 Jun 22;475(7354):65-70. doi: 10.1038/nature10236.
3
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin.
Proc Natl Acad Sci U S A. 2011 May 17;108(20):8263-8. doi: 10.1073/pnas.1014692108. Epub 2011 Apr 28.
4
The structural basis of agonist-induced activation in constitutively active rhodopsin.
Nature. 2011 Mar 31;471(7340):656-60. doi: 10.1038/nature09795. Epub 2011 Mar 9.
5
Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist.
Science. 2010 Nov 19;330(6007):1091-5. doi: 10.1126/science.1197410.
6
Binding of more than one retinoid to visual opsins.
Biophys J. 2010 Oct 6;99(7):2366-73. doi: 10.1016/j.bpj.2010.08.003.
7
Contribution of membrane elastic energy to rhodopsin function.
Biophys J. 2010 Aug 4;99(3):817-24. doi: 10.1016/j.bpj.2010.04.068.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验