BioLeap, Inc., 238 W. Delaware Avenue, Pennington, NJ 08534, USA.
J Comput Aided Mol Des. 2012 May;26(5):583-94. doi: 10.1007/s10822-012-9546-1.
The success of molecular fragment-based design depends critically on the ability to make predictions of binding poses and of affinity ranking for compounds assembled by linking fragments. The SAMPL3 Challenge provides a unique opportunity to evaluate the performance of a state-of-the-art fragment-based design methodology with respect to these requirements. In this article, we present results derived from linking fragments to predict affinity and pose in the SAMPL3 Challenge. The goal is to demonstrate how incorporating different aspects of modeling protein-ligand interactions impact the accuracy of the predictions, including protein dielectric models, charged versus neutral ligands, ΔΔGs solvation energies, and induced conformational stress. The core method is based on annealing of chemical potential in a Grand Canonical Monte Carlo (GC/MC) simulation. By imposing an initially very high chemical potential and then automatically running a sequence of simulations at successively decreasing chemical potentials, the GC/MC simulation efficiently discovers statistical distributions of bound fragment locations and orientations not found reliably without the annealing. This method accounts for configurational entropy, the role of bound water molecules, and results in a prediction of all the locations on the protein that have any affinity for the fragment. Disregarding any of these factors in affinity-rank prediction leads to significantly worse correlation with experimentally-determined free energies of binding. We relate three important conclusions from this challenge as applied to GC/MC: (1) modeling neutral ligands--regardless of the charged state in the active site--produced better affinity ranking than using charged ligands, although, in both cases, the poses were almost exactly overlaid; (2) simulating explicit water molecules in the GC/MC gave better affinity and pose predictions; and (3) applying a ΔΔGs solvation correction further improved the ranking of the neutral ligands. Using the GC/MC method under a variety of parameters in the blinded SAMPL3 Challenge provided important insights to the relevant parameters and boundaries in predicting binding affinities using simulated annealing of chemical potential calculations.
基于分子片段的设计的成功在很大程度上取决于对连接片段组装的化合物的结合构象和亲和力排序进行预测的能力。SAMPL3 挑战赛为评估最先进的基于片段的设计方法在这些要求方面的性能提供了一个独特的机会。在本文中,我们展示了通过连接片段来预测 SAMPL3 挑战赛中的亲和力和构象的结果。目标是展示将建模蛋白质-配体相互作用的不同方面纳入预测精度的影响,包括蛋白质介电模型、带电与中性配体、ΔΔGs 溶剂化能和诱导构象应力。核心方法基于在巨正则蒙特卡罗 (GC/MC) 模拟中进行化学势退火。通过施加最初非常高的化学势,然后自动在逐渐降低的化学势下运行一系列模拟,GC/MC 模拟有效地发现了没有退火就无法可靠发现的结合片段位置和取向的统计分布。该方法考虑了构象熵、结合水分子的作用,并且可以预测蛋白质上所有对片段具有亲和力的位置。在亲和力排序预测中忽略这些因素中的任何一个都会导致与实验测定的结合自由能的相关性显著降低。我们将从这项挑战中得出的三个重要结论与 GC/MC 相关联:(1)对中性配体进行建模(无论在活性位点中带电荷状态如何)比使用带电配体产生更好的亲和力排序,尽管在两种情况下,构象几乎完全重叠;(2)在 GC/MC 中模拟显式水分子可提供更好的亲和力和构象预测;(3)应用 ΔΔGs 溶剂化校正进一步改善了中性配体的排序。在盲目的 SAMPL3 挑战赛中使用各种参数下的 GC/MC 方法为使用化学势模拟退火计算预测结合亲和力时的相关参数和边界提供了重要的见解。