Fertig Elana J, Danilova Ludmila V, Favorov Alexander V, Ochs Michael F
Division of Oncology Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University Baltimore, MD, USA.
Front Genet. 2011 Nov 8;2:77. doi: 10.3389/fgene.2011.00077. eCollection 2011.
Modeling of signal driven transcriptional reprogramming is critical for understanding of organism development, human disease, and cell biology. Many current modeling techniques discount key features of the biological sub-systems when modeling multiscale, organism-level processes. We present a mechanistic hybrid model, GESSA, which integrates a novel pooled probabilistic Boolean network model of cell signaling and a stochastic simulation of transcription and translation responding to a diffusion model of extracellular signals. We apply the model to simulate the well studied cell fate decision process of the vulval precursor cells (VPCs) in C. elegans, using experimentally derived rate constants wherever possible and shared parameters to avoid overfitting. We demonstrate that GESSA recovers (1) the effects of varying scaffold protein concentration on signal strength, (2) amplification of signals in expression, (3) the relative external ligand concentration in a known geometry, and (4) feedback in biochemical networks. We demonstrate that setting model parameters based on wild-type and LIN-12 loss-of-function mutants in C. elegans leads to correct prediction of a wide variety of mutants including partial penetrance of phenotypes. Moreover, the model is relatively insensitive to parameters, retaining the wild-type phenotype for a wide range of cell signaling rate parameters.
信号驱动的转录重编程建模对于理解生物体发育、人类疾病和细胞生物学至关重要。在对多尺度、生物体水平的过程进行建模时,许多当前的建模技术忽略了生物子系统的关键特征。我们提出了一种机械混合模型GESSA,它整合了一种新颖的细胞信号传导池概率布尔网络模型以及对细胞外信号扩散模型做出响应的转录和翻译的随机模拟。我们应用该模型来模拟秀丽隐杆线虫中研究充分的外阴前体细胞(VPC)的细胞命运决定过程,尽可能使用实验得出的速率常数并共享参数以避免过度拟合。我们证明GESSA能够重现:(1)支架蛋白浓度变化对信号强度的影响;(2)表达中信号的放大;(3)已知几何结构中相对外部配体浓度;以及(4)生化网络中的反馈。我们证明,基于秀丽隐杆线虫的野生型和LIN - 12功能丧失突变体设置模型参数能够正确预测包括部分表型外显率在内的多种突变体。此外,该模型对参数相对不敏感,在广泛的细胞信号传导速率参数范围内保持野生型表型。