Trairatphisan Panuwat, Mizera Andrzej, Pang Jun, Tantar Alexandru Adrian, Sauter Thomas
Systems Biology Group, Life Sciences Research Unit, University of Luxembourg, Luxembourg, Luxembourg.
Computer Science and Communications Research Unit, University of Luxembourg, Luxembourg, Luxembourg.
PLoS One. 2014 Jul 1;9(7):e98001. doi: 10.1371/journal.pone.0098001. eCollection 2014.
There exist several computational tools which allow for the optimisation and inference of biological networks using a Boolean formalism. Nevertheless, the results from such tools yield only limited quantitative insights into the complexity of biological systems because of the inherited qualitative nature of Boolean networks.
We introduce optPBN, a Matlab-based toolbox for the optimisation of probabilistic Boolean networks (PBN) which operates under the framework of the BN/PBN toolbox. optPBN offers an easy generation of probabilistic Boolean networks from rule-based Boolean model specification and it allows for flexible measurement data integration from multiple experiments. Subsequently, optPBN generates integrated optimisation problems which can be solved by various optimisers. In term of functionalities, optPBN allows for the construction of a probabilistic Boolean network from a given set of potential constitutive Boolean networks by optimising the selection probabilities for these networks so that the resulting PBN fits experimental data. Furthermore, the optPBN pipeline can also be operated on large-scale computational platforms to solve complex optimisation problems. Apart from exemplary case studies which we correctly inferred the original network, we also successfully applied optPBN to study a large-scale Boolean model of apoptosis where it allows identifying the inverse correlation between UVB irradiation, NFκB and Caspase 3 activations, and apoptosis in primary hepatocytes quantitatively. Also, the results from optPBN help elucidating the relevancy of crosstalk interactions in the apoptotic network.
The optPBN toolbox provides a simple yet comprehensive pipeline for integrated optimisation problem generation in the PBN formalism that can readily be solved by various optimisers on local or grid-based computational platforms. optPBN can be further applied to various biological studies such as the inference of gene regulatory networks or the identification of the interaction's relevancy in signal transduction networks.
存在几种计算工具,可使用布尔形式主义对生物网络进行优化和推理。然而,由于布尔网络固有的定性性质,这些工具的结果对生物系统复杂性的定量洞察有限。
我们引入了optPBN,这是一个基于Matlab的用于优化概率布尔网络(PBN)的工具箱,它在BN/PBN工具箱的框架下运行。optPBN可根据基于规则的布尔模型规范轻松生成概率布尔网络,并允许灵活整合来自多个实验的测量数据。随后,optPBN生成可由各种优化器解决的综合优化问题。在功能方面,optPBN允许通过优化这些网络的选择概率,从给定的一组潜在组成布尔网络构建概率布尔网络,以使所得的PBN符合实验数据。此外,optPBN管道还可在大规模计算平台上运行,以解决复杂的优化问题。除了我们正确推断出原始网络的示例案例研究外,我们还成功地将optPBN应用于研究细胞凋亡的大规模布尔模型,它能够定量识别紫外线B照射、NFκB和半胱天冬酶3激活与原代肝细胞凋亡之间的负相关。此外,optPBN的结果有助于阐明凋亡网络中串扰相互作用的相关性。
optPBN工具箱为PBN形式主义中的综合优化问题生成提供了一个简单而全面的管道,可在本地或基于网格的计算平台上由各种优化器轻松解决。optPBN可进一步应用于各种生物学研究,如基因调控网络的推断或信号转导网络中相互作用相关性的识别。