Suppr超能文献

贝叶斯后验分布,无需马尔可夫链。

Bayesian posterior distributions without Markov chains.

机构信息

Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 27599-7435, USA.

出版信息

Am J Epidemiol. 2012 Mar 1;175(5):368-75. doi: 10.1093/aje/kwr433. Epub 2012 Feb 3.

Abstract

Bayesian posterior parameter distributions are often simulated using Markov chain Monte Carlo (MCMC) methods. However, MCMC methods are not always necessary and do not help the uninitiated understand Bayesian inference. As a bridge to understanding Bayesian inference, the authors illustrate a transparent rejection sampling method. In example 1, they illustrate rejection sampling using 36 cases and 198 controls from a case-control study (1976-1983) assessing the relation between residential exposure to magnetic fields and the development of childhood cancer. Results from rejection sampling (odds ratio (OR) = 1.69, 95% posterior interval (PI): 0.57, 5.00) were similar to MCMC results (OR = 1.69, 95% PI: 0.58, 4.95) and approximations from data-augmentation priors (OR = 1.74, 95% PI: 0.60, 5.06). In example 2, the authors apply rejection sampling to a cohort study of 315 human immunodeficiency virus seroconverters (1984-1998) to assess the relation between viral load after infection and 5-year incidence of acquired immunodeficiency syndrome, adjusting for (continuous) age at seroconversion and race. In this more complex example, rejection sampling required a notably longer run time than MCMC sampling but remained feasible and again yielded similar results. The transparency of the proposed approach comes at a price of being less broadly applicable than MCMC.

摘要

贝叶斯后验参数分布通常使用马尔可夫链蒙特卡罗 (MCMC) 方法进行模拟。然而,MCMC 方法并不总是必要的,并且并不能帮助初学者理解贝叶斯推理。作为理解贝叶斯推理的桥梁,作者展示了一种透明的拒绝抽样方法。在示例 1 中,他们使用 1976 年至 1983 年进行的一项病例对照研究(共 36 例病例和 198 例对照)的数据说明了拒绝抽样的使用,该研究评估了居住环境磁场暴露与儿童癌症发展之间的关系。拒绝抽样的结果(比值比(OR)=1.69,95%后验区间(PI):0.57,5.00)与 MCMC 结果(OR=1.69,95%PI:0.58,4.95)和数据增强先验的近似值(OR=1.74,95%PI:0.60,5.06)相似。在示例 2 中,作者将拒绝抽样应用于一项队列研究,该研究涉及 315 例人类免疫缺陷病毒血清转化者(1984 年至 1998 年),以评估感染后病毒载量与 5 年获得性免疫缺陷综合征发生率之间的关系,调整了(连续)血清转化时的年龄和种族。在这个更复杂的例子中,拒绝抽样所需的运行时间明显长于 MCMC 抽样,但仍然可行,并且再次产生了相似的结果。所提出方法的透明度以适用范围不如 MCMC 广泛为代价。

相似文献

1
Bayesian posterior distributions without Markov chains.贝叶斯后验分布,无需马尔可夫链。
Am J Epidemiol. 2012 Mar 1;175(5):368-75. doi: 10.1093/aje/kwr433. Epub 2012 Feb 3.
2
A simple introduction to Markov Chain Monte-Carlo sampling.马尔可夫链蒙特卡罗采样简介。
Psychon Bull Rev. 2018 Feb;25(1):143-154. doi: 10.3758/s13423-016-1015-8.
6
Fast Bayesian whole-brain fMRI analysis with spatial 3D priors.具有空间3D先验的快速贝叶斯全脑功能磁共振成像分析。
Neuroimage. 2017 Feb 1;146:211-225. doi: 10.1016/j.neuroimage.2016.11.040. Epub 2016 Nov 19.
8
Scalable Bayesian phylogenetics.可扩展的贝叶斯系统发生学。
Philos Trans R Soc Lond B Biol Sci. 2022 Oct 10;377(1861):20210242. doi: 10.1098/rstb.2021.0242. Epub 2022 Aug 22.
10
On Bayesian calculations for mixture likelihoods and priors.关于混合似然和先验的贝叶斯计算。
Stat Med. 1999 Jun 30;18(12):1555-70. doi: 10.1002/(sici)1097-0258(19990630)18:12<1555::aid-sim145>3.0.co;2-x.

引用本文的文献

6
The researcher and the consultant: from testing to probability statements.研究者与顾问:从检验到概率陈述。
Eur J Epidemiol. 2015 Sep;30(9):1003-8. doi: 10.1007/s10654-015-0054-1. Epub 2015 Jun 25.
7
Breast cancer subtypes and previously established genetic risk factors: a bayesian approach.乳腺癌亚型与已确定的遗传风险因素:贝叶斯方法。
Cancer Epidemiol Biomarkers Prev. 2014 Jan;23(1):84-97. doi: 10.1158/1055-9965.EPI-13-0463. Epub 2013 Oct 31.

本文引用的文献

3
Bayesian methods for highly correlated exposure data.用于高度相关暴露数据的贝叶斯方法。
Epidemiology. 2007 Mar;18(2):199-207. doi: 10.1097/01.ede.0000256320.30737.c0.
7
Markov chain Monte Carlo without likelihoods.无似然马尔可夫链蒙特卡罗方法。
Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15324-8. doi: 10.1073/pnas.0306899100. Epub 2003 Dec 8.
10
Models for the incubation of AIDS and variations according to age and period.艾滋病潜伏期模型及其随年龄和时期的变化。
Stat Med. 1996;15(21-22):2459-73. doi: 10.1002/(sici)1097-0258(19961130)15:22<2459::aid-sim464>3.0.co;2-q.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验