Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 27599-7435, USA.
Am J Epidemiol. 2012 Mar 1;175(5):368-75. doi: 10.1093/aje/kwr433. Epub 2012 Feb 3.
Bayesian posterior parameter distributions are often simulated using Markov chain Monte Carlo (MCMC) methods. However, MCMC methods are not always necessary and do not help the uninitiated understand Bayesian inference. As a bridge to understanding Bayesian inference, the authors illustrate a transparent rejection sampling method. In example 1, they illustrate rejection sampling using 36 cases and 198 controls from a case-control study (1976-1983) assessing the relation between residential exposure to magnetic fields and the development of childhood cancer. Results from rejection sampling (odds ratio (OR) = 1.69, 95% posterior interval (PI): 0.57, 5.00) were similar to MCMC results (OR = 1.69, 95% PI: 0.58, 4.95) and approximations from data-augmentation priors (OR = 1.74, 95% PI: 0.60, 5.06). In example 2, the authors apply rejection sampling to a cohort study of 315 human immunodeficiency virus seroconverters (1984-1998) to assess the relation between viral load after infection and 5-year incidence of acquired immunodeficiency syndrome, adjusting for (continuous) age at seroconversion and race. In this more complex example, rejection sampling required a notably longer run time than MCMC sampling but remained feasible and again yielded similar results. The transparency of the proposed approach comes at a price of being less broadly applicable than MCMC.
贝叶斯后验参数分布通常使用马尔可夫链蒙特卡罗 (MCMC) 方法进行模拟。然而,MCMC 方法并不总是必要的,并且并不能帮助初学者理解贝叶斯推理。作为理解贝叶斯推理的桥梁,作者展示了一种透明的拒绝抽样方法。在示例 1 中,他们使用 1976 年至 1983 年进行的一项病例对照研究(共 36 例病例和 198 例对照)的数据说明了拒绝抽样的使用,该研究评估了居住环境磁场暴露与儿童癌症发展之间的关系。拒绝抽样的结果(比值比(OR)=1.69,95%后验区间(PI):0.57,5.00)与 MCMC 结果(OR=1.69,95%PI:0.58,4.95)和数据增强先验的近似值(OR=1.74,95%PI:0.60,5.06)相似。在示例 2 中,作者将拒绝抽样应用于一项队列研究,该研究涉及 315 例人类免疫缺陷病毒血清转化者(1984 年至 1998 年),以评估感染后病毒载量与 5 年获得性免疫缺陷综合征发生率之间的关系,调整了(连续)血清转化时的年龄和种族。在这个更复杂的例子中,拒绝抽样所需的运行时间明显长于 MCMC 抽样,但仍然可行,并且再次产生了相似的结果。所提出方法的透明度以适用范围不如 MCMC 广泛为代价。