Suppr超能文献

论肱二头肌疲劳对人体活动识别的影响。

On the Impact of Biceps Muscle Fatigue in Human Activity Recognition.

机构信息

Department of Computer Science and Software Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.

出版信息

Sensors (Basel). 2021 Feb 4;21(4):1070. doi: 10.3390/s21041070.

Abstract

Nowadays, Human Activity Recognition (HAR) systems, which use wearables and smart systems, are a part of our daily life. Despite the abundance of literature in the area, little is known about the impact of muscle fatigue on these systems' performance. In this work, we use the biceps concentration curls exercise as an example of a HAR activity to observe the impact of fatigue impact on such systems. Our dataset consists of 3000 biceps concentration curls performed and collected from 20 volunteers aged between 20-35. Our findings indicate that fatigue often occurs in later sets of an exercise and extends the completion time of later sets by up to 31% and decreases muscular endurance by 4.1%. Another finding shows that changes in data patterns are often occurring during fatigue presence, causing seven features to become statistically insignificant. Further findings indicate that fatigue can cause a substantial decrease in performance in both subject-specific and cross-subject models. Finally, we observed that a Feedforward Neural Network (FNN) showed the best performance in both cross-subject and subject-specific models in all our evaluations.

摘要

如今,使用可穿戴设备和智能系统的人体活动识别 (HAR) 系统已经成为我们日常生活的一部分。尽管该领域有大量文献,但对于肌肉疲劳对这些系统性能的影响知之甚少。在这项工作中,我们使用二头肌集中卷曲运动作为 HAR 活动的一个例子,观察疲劳对这些系统的影响。我们的数据集由 20 名年龄在 20-35 岁之间的志愿者进行的 3000 次二头肌集中卷曲运动组成。我们的研究结果表明,疲劳通常发生在运动的后期,并且使后期运动的完成时间延长了 31%,同时使肌肉耐力降低了 4.1%。另一个发现表明,在疲劳存在期间,数据模式的变化经常发生,导致七个特征变得在统计学上无意义。进一步的研究结果表明,疲劳会导致在特定主体和跨主体模型中的性能显著下降。最后,我们观察到在所有评估中,前馈神经网络 (FNN) 在跨主体和特定主体模型中都表现出最佳性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3bc/7913896/435a1c7c3326/sensors-21-01070-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验