Suppr超能文献

利用概率性行为信息优化对比检测能力。

Optimization of contrast detection power with probabilistic behavioral information.

机构信息

Department of Radiology, School of Medicine, University of Colorado-Denver, CO 80045, USA.

出版信息

Neuroimage. 2012 Apr 15;60(3):1788-99. doi: 10.1016/j.neuroimage.2012.01.127. Epub 2012 Feb 6.

Abstract

Recent progress in the experimental design for event-related fMRI experiments made it possible to find the optimal stimulus sequence for maximum contrast detection power using a genetic algorithm. In this study, a novel algorithm is proposed for optimization of contrast detection power by including probabilistic behavioral information, based on pilot data, in the genetic algorithm. As a particular application, a recognition memory task is studied and the design matrix optimized for contrasts involving the familiarity of individual items (pictures of objects) and the recollection of qualitative information associated with the items (left/right orientation). Optimization of contrast efficiency is a complicated issue whenever subjects' responses are not deterministic but probabilistic. Contrast efficiencies are not predictable unless behavioral responses are included in the design optimization. However, available software for design optimization does not include options for probabilistic behavioral constraints. If the anticipated behavioral responses are included in the optimization algorithm, the design is optimal for the assumed behavioral responses, and the resulting contrast efficiency is greater than what either a block design or a random design can achieve. Furthermore, improvements of contrast detection power depend strongly on the behavioral probabilities, the perceived randomness, and the contrast of interest. The present genetic algorithm can be applied to any case in which fMRI contrasts are dependent on probabilistic responses that can be estimated from pilot data.

摘要

最近,事件相关 fMRI 实验的实验设计取得了进展,使得使用遗传算法找到最大对比度检测能力的最佳刺激序列成为可能。在这项研究中,基于初步数据,提出了一种新的算法,通过将概率行为信息纳入遗传算法,来优化对比度检测能力。作为一个特定的应用,研究了识别记忆任务,并优化了设计矩阵,用于对比单个项目(物体的图片)的熟悉度和与项目相关的定性信息的回忆(左右方向)。只要受试者的反应不是确定性的而是概率性的,对比度效率的优化就是一个复杂的问题。除非行为反应包含在设计优化中,否则对比度效率是不可预测的。但是,用于设计优化的可用软件不包括概率行为约束的选项。如果将预期的行为反应纳入优化算法中,那么设计就是针对假设的行为反应进行优化的,并且得到的对比度效率大于块设计或随机设计所能达到的效率。此外,对比度检测能力的提高强烈依赖于行为概率、感知随机性和感兴趣的对比度。目前的遗传算法可以应用于任何情况下,只要 fMRI 对比度依赖于可以从初步数据中估计的概率响应。

相似文献

1
Optimization of contrast detection power with probabilistic behavioral information.利用概率性行为信息优化对比检测能力。
Neuroimage. 2012 Apr 15;60(3):1788-99. doi: 10.1016/j.neuroimage.2012.01.127. Epub 2012 Feb 6.
7
Resisting false recognition: An ERP study of lure discrimination.抵制错误识别:诱骗辨别事件相关电位研究
Brain Res. 2015 Oct 22;1624:336-348. doi: 10.1016/j.brainres.2015.07.049. Epub 2015 Aug 6.

本文引用的文献

3
The medial temporal lobe and the attributes of memory.内侧颞叶与记忆的属性。
Trends Cogn Sci. 2011 May;15(5):210-7. doi: 10.1016/j.tics.2011.03.005. Epub 2011 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验