Suppr超能文献

微通道增强型神经元-电极界面的生物物理特性。

Biophysics of microchannel-enabled neuron-electrode interfaces.

机构信息

Neuroengineering Group, Catalonia Bioengineering Institute (IBEC), c/Baldiri i Reixach 15-21, 08028 Barcelona, Spain.

出版信息

J Neural Eng. 2012 Apr;9(2):026010. doi: 10.1088/1741-2560/9/2/026010. Epub 2012 Feb 15.

Abstract

We have previously described the use of microchannels (μChannels) as substrate-integrated equivalents of micropipettes and advantageous neuron-electrode interface enhancers. The use of μChannels to establish stable recording and stimulation of threading axons results in a high signal-to-noise ratio (SNR), potentially high-throughput and low-cost alternative to conventional substrate-embedded microelectrodes. Here we confirm the consistent achievement of high SNRs with μChannels and systematically characterize the impact of μChannel geometry on the measured signals via numerical simulations and in vitro experiments. We demonstrate and rationalize how channels with a length of ≤300 μm and channel cross section of ≤12 μm(2) support spontaneous formation of seals and yield spike sizes in the millivolt range. Despite the low degree of complexity involved in their fabrication and use, μChannel devices provide a single-unit mean SNR of 101 ± 76, which compares favourably with the SNR obtained from typical microelectrode arrays.

摘要

我们之前曾描述过使用微通道(μChannels)作为微管的基板集成等效物,以及有利的神经元-电极界面增强物。使用μChannels 建立稳定的穿轴突记录和刺激,可获得高信噪比(SNR),是传统基板嵌入式微电极的潜在高通量、低成本替代方案。在这里,我们通过数值模拟和体外实验确认了μChannels 始终能够实现高 SNR,并系统地分析了μChannel 几何形状对测量信号的影响。我们展示并解释了长度≤300μm 且通道横截面≤12μm²的通道如何支持自发形成密封,并产生毫伏范围内的尖峰大小。尽管它们的制造和使用涉及的复杂性程度较低,但 μChannel 器件提供的单单元平均 SNR 为 101±76,与典型微电极阵列获得的 SNR 相比具有优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验