Suppr超能文献

通过将结构和功能基因组学数据与蛋白质网络进行整合获得新的认识。

Novel insights through the integration of structural and functional genomics data with protein networks.

机构信息

Department of Chemistry, Yale University, New Haven, CT 06520, USA.

出版信息

J Struct Biol. 2012 Sep;179(3):320-6. doi: 10.1016/j.jsb.2012.02.001. Epub 2012 Feb 11.

Abstract

In recent years, major advances in genomics, proteomics, macromolecular structure determination, and the computational resources capable of processing and disseminating the large volumes of data generated by each have played major roles in advancing a more systems-oriented appreciation of biological organization. One product of systems biology has been the delineation of graph models for describing genome-wide protein-protein interaction networks. The network organization and topology which emerges in such models may be used to address fundamental questions in an array of cellular processes, as well as biological features intrinsic to the constituent proteins (or "nodes") themselves. However, graph models alone constitute an abstraction which neglects the underlying biological and physical reality that the network's nodes and edges are highly heterogeneous entities. Here, we explore some of the advantages of introducing a protein structural dimension to such models, as the marriage of conventional network representations with macromolecular structural data helps to place static node and edge constructs in a biologically more meaningful context. We emphasize that 3D protein structures constitute a valuable conceptual and predictive framework by discussing examples of the insights provided, such as enabling in silico predictions of protein-protein interactions, providing rational and compelling classification schemes for network elements, as well as revealing interesting intrinsic differences between distinct node types, such as disorder and evolutionary features, which may then be rationalized in light of their respective functions within networks.

摘要

近年来,基因组学、蛋白质组学、大分子结构测定以及能够处理和传播每个领域产生的大量数据的计算资源在推进更系统的生物组织认识方面发挥了重要作用。系统生物学的一个产物是描述全基因组蛋白质-蛋白质相互作用网络的图形模型的描绘。在这样的模型中出现的网络组织和拓扑结构可用于解决一系列细胞过程中的基本问题,以及构成蛋白质(或“节点”)本身的固有生物学特征。然而,仅图形模型构成了一种抽象,它忽略了网络的节点和边缘是高度异质实体的基础生物学和物理现实。在这里,我们探讨了将蛋白质结构维度引入此类模型的一些优势,因为传统网络表示形式与大分子结构数据的结合有助于将静态节点和边缘结构置于更具生物学意义的上下文中。我们强调,3D 蛋白质结构构成了一个有价值的概念和预测框架,通过讨论所提供的见解示例,例如能够进行蛋白质-蛋白质相互作用的计算预测、为网络元素提供合理且引人注目的分类方案,以及揭示不同节点类型之间有趣的内在差异,例如无序和进化特征,然后可以根据它们在网络中的各自功能进行合理化。

相似文献

5
Structure-based functional inference in structural genomics.结构基因组学中基于结构的功能推断
J Struct Funct Genomics. 2003;4(2-3):129-35. doi: 10.1023/a:1026200610644.
6
Influence of homology and node age on the growth of protein-protein interaction networks.同源性和节点年龄对蛋白质-蛋白质相互作用网络生长的影响。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 1):041919. doi: 10.1103/PhysRevE.86.041919. Epub 2012 Oct 31.
9
Unraveling protein networks with power graph analysis.利用幂图分析解析蛋白质网络。
PLoS Comput Biol. 2008 Jul 11;4(7):e1000108. doi: 10.1371/journal.pcbi.1000108.

引用本文的文献

5
Genotype to phenotype via network analysis.通过网络分析进行基因型到表型的研究。
Curr Opin Genet Dev. 2013 Dec;23(6):611-21. doi: 10.1016/j.gde.2013.10.003. Epub 2013 Nov 14.
8
Interface-resolved network of protein-protein interactions.界面分辨的蛋白质-蛋白质相互作用网络。
PLoS Comput Biol. 2013;9(5):e1003065. doi: 10.1371/journal.pcbi.1003065. Epub 2013 May 16.

本文引用的文献

2
Measuring the evolutionary rewiring of biological networks.测量生物网络的进化重布线。
PLoS Comput Biol. 2011 Jan 6;7(1):e1001050. doi: 10.1371/journal.pcbi.1001050.
3
Protein-protein interactions.蛋白质-蛋白质相互作用。
Biochem Soc Trans. 2010 Aug;38(4):875-8. doi: 10.1042/BST0380875.
5
Exploring the potential of template-based modelling.探索基于模板的建模的潜力。
Bioinformatics. 2010 Aug 1;26(15):1849-56. doi: 10.1093/bioinformatics/btq294. Epub 2010 Jun 4.
10
Sequencing technologies - the next generation.测序技术——下一代。
Nat Rev Genet. 2010 Jan;11(1):31-46. doi: 10.1038/nrg2626. Epub 2009 Dec 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验