Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas, USA.
PLoS Genet. 2012;8(2):e1002534. doi: 10.1371/journal.pgen.1002534. Epub 2012 Feb 16.
Mobile group II introns are bacterial retrotransposons that are thought to have invaded early eukaryotes and evolved into introns and retroelements in higher organisms. In bacteria, group II introns typically retrohome via full reverse splicing of an excised intron lariat RNA into a DNA site, where it is reverse transcribed by the intron-encoded protein. Recently, we showed that linear group II intron RNAs, which can result from hydrolytic splicing or debranching of lariat RNAs, can retrohome in eukaryotes by performing only the first step of reverse splicing, ligating their 3' end to the downstream DNA exon. Reverse transcription then yields an intron cDNA, whose free end is linked to the upstream DNA exon by an error-prone process that yields junctions similar to those formed by non-homologous end joining (NHEJ). Here, by using Drosophila melanogaster NHEJ mutants, we show that linear intron RNA retrohoming occurs by major Lig4-dependent and minor Lig4-independent mechanisms, which appear to be related to classical and alternate NHEJ, respectively. The DNA repair polymerase θ plays a crucial role in both pathways. Surprisingly, however, mutations in Ku70, which functions in capping chromosome ends during NHEJ, have only moderate, possibly indirect effects, suggesting that both Lig4 and the alternate end-joining ligase act in some retrohoming events independently of Ku. Another potential Lig4-independent mechanism, reverse transcriptase template switching from the intron RNA to the upstream exon DNA, occurs in vitro, but gives junctions differing from the majority in vivo. Our results show that group II introns can utilize cellular NHEJ enzymes for retromobility in higher organisms, possibly exploiting mechanisms that contribute to retrotransposition and mitigate DNA damage by resident retrotransposons. Additionally, our results reveal novel activities of group II intron reverse transcriptases, with implications for retrohoming mechanisms and potential biotechnological applications.
移动组 II 内含子是细菌反转录转座子,据认为它们已经侵入了早期真核生物,并在高等生物中进化成内含子和反转元件。在细菌中,组 II 内含子通常通过切除内含子套索 RNA 的完全反向剪接,反向转移到 DNA 位点,然后由内含子编码的蛋白质进行逆转录。最近,我们发现线性组 II 内含子 RNA,其可以通过套索 RNA 的水解剪接或分支酶解产生,在真核生物中可以通过仅进行反向剪接的第一步来反向转移,将其 3'端连接到下游 DNA 外显子上。然后逆转录产生内含子 cDNA,其游离端通过易错过程与上游 DNA 外显子连接,该过程产生与非同源末端连接(NHEJ)形成的类似连接点。在这里,我们使用果蝇 NHEJ 突变体,证明了线性内含子 RNA 反向转移是由主要的 Lig4 依赖和次要的 Lig4 不依赖机制介导的,这两种机制分别与经典和替代的 NHEJ 相关。DNA 修复聚合酶θ在两条途径中都发挥着至关重要的作用。然而,令人惊讶的是,Ku70 的突变,其在 NHEJ 过程中起作用于染色体末端加帽,只有适度的、可能是间接的影响,这表明 Lig4 和替代的末端连接酶在某些反向转移事件中独立于 Ku 发挥作用。另一种潜在的 Lig4 独立机制,即从内含子 RNA 到上游外显子 DNA 的逆转录酶模板转换,在体外发生,但在体内产生与大多数不同的连接点。我们的结果表明,组 II 内含子可以在高等生物中利用细胞 NHEJ 酶进行返祖移动,可能利用了有助于反转录转座并减轻驻留反转录转座子造成的 DNA 损伤的机制。此外,我们的结果揭示了组 II 内含子逆转录酶的新活性,这对反向转移机制和潜在的生物技术应用具有重要意义。