Suppr超能文献

S4-S5 连接子充当 HERG K+ 通道激活和失活门控的信号整合器。

The S4-S5 linker acts as a signal integrator for HERG K+ channel activation and deactivation gating.

机构信息

Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.

出版信息

PLoS One. 2012;7(2):e31640. doi: 10.1371/journal.pone.0031640. Epub 2012 Feb 16.

Abstract

Human ether-à-go-go-related gene (hERG) K(+) channels have unusual gating kinetics. Characterised by slow activation/deactivation but rapid inactivation/recovery from inactivation, the unique gating kinetics underlie the central role hERG channels play in cardiac repolarisation. The slow activation and deactivation kinetics are regulated in part by the S4-S5 linker, which couples movement of the voltage sensor domain to opening of the activation gate at the distal end of the inner helix of the pore domain. It has also been suggested that cytosolic domains may interact with the S4-S5 linker to regulate activation and deactivation kinetics. Here, we show that the solution structure of a peptide corresponding to the S4-S5 linker of hERG contains an amphipathic helix. The effects of mutations at the majority of residues in the S4-S5 linker of hERG were consistent with the previously identified role in coupling voltage sensor movement to the activation gate. However, mutations to Ser543, Tyr545, Gly546 and Ala548 had more complex phenotypes indicating that these residues are involved in additional interactions. We propose a model in which the S4-S5 linker, in addition to coupling VSD movement to the activation gate, also contributes to interactions that stabilise the closed state and a separate set of interactions that stabilise the open state. The S4-S5 linker therefore acts as a signal integrator and plays a crucial role in the slow deactivation kinetics of the channel.

摘要

人类 Ether-a-go-go 相关基因 (hERG) K(+) 通道具有异常的门控动力学。其特点是缓慢的激活/失活,但快速的失活/恢复,独特的门控动力学是 hERG 通道在心脏复极化中起核心作用的基础。缓慢的激活和失活动力学部分受 S4-S5 接头调控,该接头将电压传感器域的运动与孔域内螺旋远侧的激活门的打开偶联。有人还提出,细胞溶质域可能与 S4-S5 接头相互作用以调节激活和失活动力学。在这里,我们展示了与 hERG 的 S4-S5 接头相对应的肽的溶液结构包含一个两亲性螺旋。hERG 的 S4-S5 接头中大多数残基的突变的影响与先前鉴定的将电压传感器运动偶联到激活门的作用一致。然而,S543、Y545、G546 和 A548 突变的表型更为复杂,表明这些残基参与了其他相互作用。我们提出了一个模型,其中 S4-S5 接头除了将 VSD 运动偶联到激活门之外,还参与稳定关闭状态的相互作用和稳定开放状态的另一组相互作用。因此,S4-S5 接头充当信号整合器,在通道的缓慢失活动力学中起关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae6f/3280985/a46fcc0540e1/pone.0031640.g001.jpg

相似文献

1
The S4-S5 linker acts as a signal integrator for HERG K+ channel activation and deactivation gating.
PLoS One. 2012;7(2):e31640. doi: 10.1371/journal.pone.0031640. Epub 2012 Feb 16.
2
Regional flexibility in the S4-S5 linker regulates hERG channel closed-state stabilization.
Pflugers Arch. 2014 Oct;466(10):1911-9. doi: 10.1007/s00424-013-1431-9. Epub 2014 Jan 10.
4
5
Mutations of the S4-S5 linker alter activation properties of HERG potassium channels expressed in Xenopus oocytes.
J Physiol. 1999 Feb 1;514 ( Pt 3)(Pt 3):667-75. doi: 10.1111/j.1469-7793.1999.667ad.x.
6
Stabilization of the Activated hERG Channel Voltage Sensor by Depolarization Involves the S4-S5 Linker.
Biophys J. 2017 Jan 24;112(2):300-312. doi: 10.1016/j.bpj.2016.12.021.
7
Mutations within the S4-S5 linker alter voltage sensor constraints in hERG K+ channels.
Biophys J. 2010 Nov 3;99(9):2841-52. doi: 10.1016/j.bpj.2010.08.030.
8
Voltage sensor movement in the hERG K+ channel.
Novartis Found Symp. 2005;266:46-52; discussion 52-6, 95-9. doi: 10.1002/047002142x.ch5.
9
Voltage-dependent gating of HERG potassium channels.
Front Pharmacol. 2012 May 8;3:83. doi: 10.3389/fphar.2012.00083. eCollection 2012.
10
A new mechanism of voltage-dependent gating exposed by K10.1 channels interrupted between voltage sensor and pore.
J Gen Physiol. 2017 May 1;149(5):577-593. doi: 10.1085/jgp.201611742. Epub 2017 Mar 30.

引用本文的文献

3
Electrophysiological characterization of the hERG R56Q LQTS variant and targeted rescue by the activator RPR260243.
J Gen Physiol. 2021 Oct 4;153(10). doi: 10.1085/jgp.202112923. Epub 2021 Aug 16.
5
The EAG Voltage-Dependent K Channel Subfamily: Similarities and Differences in Structural Organization and Gating.
Front Pharmacol. 2020 Apr 15;11:411. doi: 10.3389/fphar.2020.00411. eCollection 2020.
6
Modulation of hERG K Channel Deactivation by Voltage Sensor Relaxation.
Front Pharmacol. 2020 Feb 28;11:139. doi: 10.3389/fphar.2020.00139. eCollection 2020.
7
Extracellular protons accelerate hERG channel deactivation by destabilizing voltage sensor relaxation.
J Gen Physiol. 2019 Feb 4;151(2):231-246. doi: 10.1085/jgp.201812137. Epub 2018 Dec 7.
9
Functional characterization of Kv11.1 (hERG) potassium channels split in the voltage-sensing domain.
Pflugers Arch. 2018 Jul;470(7):1069-1085. doi: 10.1007/s00424-018-2135-y. Epub 2018 Mar 23.
10
Gating mechanism of Kv11.1 (hERG) K channels without covalent connection between voltage sensor and pore domains.
Pflugers Arch. 2018 Mar;470(3):517-536. doi: 10.1007/s00424-017-2093-9. Epub 2017 Dec 21.

本文引用的文献

2
The solution structure of the S4-S5 linker of the hERG potassium channel.
J Pept Sci. 2012 Feb;18(2):140-5. doi: 10.1002/psc.1427. Epub 2011 Nov 3.
4
hERG potassium channel gating is mediated by N- and C-terminal region interactions.
J Gen Physiol. 2011 Mar;137(3):315-25. doi: 10.1085/jgp.201010582.
5
The N-terminal tail of hERG contains an amphipathic α-helix that regulates channel deactivation.
PLoS One. 2011 Jan 13;6(1):e16191. doi: 10.1371/journal.pone.0016191.
7
NMR solution structure of the N-terminal domain of hERG and its interaction with the S4-S5 linker.
Biochem Biophys Res Commun. 2010 Dec 3;403(1):126-32. doi: 10.1016/j.bbrc.2010.10.132. Epub 2010 Nov 3.
8
Mutations within the S4-S5 linker alter voltage sensor constraints in hERG K+ channels.
Biophys J. 2010 Nov 3;99(9):2841-52. doi: 10.1016/j.bpj.2010.08.030.
9
Role of intracellular domains in the function of the herg potassium channel.
Eur Biophys J. 2009 Jun;38(5):569-76. doi: 10.1007/s00249-009-0408-2. Epub 2009 Jan 27.
10
The pore domain outer helix contributes to both activation and inactivation of the HERG K+ channel.
J Biol Chem. 2009 Jan 9;284(2):1000-8. doi: 10.1074/jbc.M806400200. Epub 2008 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验