Department of Bioscience and Biotechnology, Okayama University, Japan.
Acc Chem Res. 2012 Jul 17;45(7):1039-47. doi: 10.1021/ar200227n. Epub 2012 Feb 24.
Because RNA interference (RNAi) can be applied to any gene, this technique has been widely used for studying gene functions. In addition, many researchers are attempting to use RNAi technology in RNAi-based therapies. However, several challenging and controversial issues have arisen during the widespread application of RNAi including target gene specificity, target cell specificity, and spatiotemporal control of gene silencing. To address these issues, several groups have utilized photochemistry to control the RNA release, both spatially and temporally. In this Account, we focus on recent studies using photocleavable protecting groups, photosensitizers, Hand gold nanoparticles for photoinduced RNAi. In 2005 the first report of photoinduced RNAi used a caged short interfering RNA (siRNA), an siRNA carrying a photocleavable protecting group. Caging groups block the bioactivities of target molecules, but allow for complete recovery of these functions via photoactivation. However, some RNAi activity can occur in these caged siRNAs, so it will be necessary to decrease this "leakage" and raise the RNAi activity restored after irradiation. This technique also uses UV light around 350 nm, which is cytotoxic, but in the near future we expect that it will be possible to use visible and near-infrared light We also examine the application of photochemical internalization (PCI) to RNAi technology, which involves a combination of photosensitizers and light. Instead of inducing RNAi using light, the strategy behind this method was to enhance RNAi using RNA carriers. Many wellknown RNA carriers deliver siRNAs into cells by endocytosis. The siRNAs are trapped in endocytic vesicles and have to be released into the cytoplasm in order to express their activity. To achieve the endosomal escape of siRNAs, PCI technology employed photosensitizers to generate light-dependent reactive oxygen species (ROS) that disrupted the endocytic vesicles. In most studies, RNAi-mediated knockdown of the target gene was detected even without PCI. Recently, a polymer capable of trapping the siRNA in endocytic vesicles controlled RNAi almost entirely by light. CLIP-RNAi uses photosensitizing carrier proteins that can be activated over a wide range of visible light wavelengths. With this method RNA carrier/siRNA complexes are completely trapped within endosomes, and RNAi is controlled strictly by light. Such precise, light-dependent control will open up new possibilities for cellular and molecular biology and therapy. Most recently, gold nanoparticles (AuNPs) conjugated to siRNA have provided temporal and spatial control of RNAi. The light-dependent melting of AuNPs accompanied by a shape transformation induces the release of thiolated siRNAs from AuNPs. In this method, the unique optical properties of the AuNP enable deep penetration of the excitation light into tissues at nearinfrared wavelengths. The development of photoinduced RNAi technology will lead to novel insights into gene functions and selective drug delivery, and many other scientific fields will continue to influence its progress.
由于 RNA 干扰 (RNAi) 可应用于任何基因,因此该技术已被广泛用于研究基因功能。此外,许多研究人员正试图将 RNAi 技术应用于基于 RNAi 的治疗中。然而,在 RNAi 的广泛应用中出现了一些具有挑战性和争议性的问题,包括靶基因特异性、靶细胞特异性和基因沉默的时空控制。为了解决这些问题,一些研究小组已经利用光化学来控制 RNA 的释放,包括空间和时间上的控制。在本报告中,我们重点介绍了最近使用光解保护基团、光敏剂和金纳米粒子进行光诱导 RNAi 的研究。2005 年,首次报道了使用光解封闭短干扰 RNA(siRNA)的光诱导 RNAi,siRNA 带有光解保护基团。封闭基团阻断靶分子的生物活性,但通过光激活可完全恢复这些功能。然而,在这些封闭的 siRNA 中可能会发生一些 RNAi 活性,因此有必要降低这种“泄漏”并提高照射后恢复的 RNAi 活性。该技术还使用 350nm 左右的紫外线,这是细胞毒性的,但在不久的将来,我们期望能够使用可见光和近红外光。我们还研究了光化学内化 (PCI) 在 RNAi 技术中的应用,该技术涉及光敏剂和光的结合。这种方法背后的策略不是用光诱导 RNAi,而是用 RNA 载体增强 RNAi。许多著名的 RNA 载体通过内吞作用将 siRNA 递送到细胞中。siRNA 被困在内吞小泡中,为了表达其活性,必须将其释放到细胞质中。为了实现 siRNA 的内体逃逸,PCI 技术利用光敏剂产生依赖光的活性氧 (ROS),破坏内体小泡。在大多数研究中,即使没有 PCI,也能检测到靶基因的 RNAi 介导的敲低。最近,一种能够将 siRNA 困在内体小泡中的聚合物几乎完全通过光控制 RNAi。CLIP-RNAi 使用可以在广泛的可见光波长范围内被激活的光敏载体蛋白。通过这种方法,RNA 载体/siRNA 复合物完全被困在内体中,RNAi 严格受光控制。这种精确的、依赖光的控制将为细胞和分子生物学和治疗开辟新的可能性。最近,与 siRNA 偶联的金纳米粒子 (AuNPs) 提供了 RNAi 的时空控制。AuNPs 的光依赖性熔化伴随着形状转变,导致巯基化 siRNA 从 AuNPs 中释放。在这种方法中,AuNP 的独特光学性质使近红外波长的激发光能够深入组织。光诱导 RNAi 技术的发展将为基因功能和选择性药物输送提供新的见解,许多其他科学领域将继续影响其发展。