Suppr超能文献

检测平行尖峰数据中的同步点火链。

Detecting synfire chains in parallel spike data.

机构信息

Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

J Neurosci Methods. 2012 Apr 30;206(1):54-64. doi: 10.1016/j.jneumeth.2012.02.003. Epub 2012 Feb 15.

Abstract

The synfire chain model of brain organization has received much theoretical attention since its introduction (Abeles, 1982, 1991). However there has been no convincing experimental demonstration of synfire chains due partly to limitations of recording technology but also due to lack of appropriate analytic methods for large scale recordings of parallel spike trains. We have previously published one such method based on intersection of the neural populations active at two different times (Schrader et al., 2008). In the present paper we extend this analysis to deal with higher firing rates and noise levels, and develop two additional tools based on properties of repeating firing patterns. All three measures show characteristic signatures if synfire chains underlie the recorded data. However we demonstrate that the detection of repeating firing patterns alone (as used in several papers) is not enough to infer the presence of synfire chains. Positive results from all three measures are needed.

摘要

自提出以来(Abeles,1982,1991),神经同步活动链模型在理论上受到了广泛关注。然而,由于记录技术的限制以及缺乏用于大规模并行尖峰序列记录的适当分析方法,目前还没有令人信服的实验证据证明存在神经同步活动链。我们之前发表过一种基于在两个不同时间活跃的神经元群体之间的交集的方法(Schrader 等人,2008)。在本文中,我们将此分析方法扩展到处理更高的发射率和噪声水平,并基于重复发射模式的特性开发了另外两种工具。如果记录数据的基础是神经同步活动链,则所有三种方法都显示出特征性的信号。然而,我们证明,仅检测重复发射模式(如在几篇论文中使用的那样)不足以推断神经同步活动链的存在。需要来自所有三种方法的阳性结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验