Suppr超能文献

调节通气活动中的受体相互作用。

Receptor interactions in modulating ventilatory activity.

作者信息

Mitchell G S, Douse M A, Foley K T

机构信息

Department of Comparative Biosciences, University of Wisconsin, Madison 53706.

出版信息

Am J Physiol. 1990 Nov;259(5 Pt 2):R911-20. doi: 10.1152/ajpregu.1990.259.5.R911.

Abstract

The ventilatory control system utilizes a variety of sensory receptor groups, including chemoreceptors and mechanoreceptors, to provide feedback concerning the status of controlled variables. Most ventilatory responses to altered receptor inputs generally involve a complex interaction between several receptor groups, central integrative mechanisms, and other modulatory inputs (e.g., "state," hormonal, or neurotransmitter status). Because the control system is complex, nonlinear, and dynamic, the ultimate ventilatory response elicited by a given stimulus is not easy to predict based on the reflex effects of individual receptor groups studied in isolation. A full understanding of the role that sensory receptors play in ventilatory control requires information concerning interactions among receptor groups and with other elements of the control system. The complexity of the problem and the lack of a uniform definition of the term "interaction" has hindered research in this area. An interaction is defined as a nonadditive relationship between independent inputs to the system. Within this definition, five domains of interaction are described. 1) Algebraic interactions occur in ventilation and/or its components because of their multiplicative and nonlinear relationship. 2) Closed-loop interactions occur because of the prevalence of feedback loops within the respiratory control system. 3) Neural interactions reflect central nervous system integration of simultaneous receptor inputs and are demonstrated when feedback loops are opened. Three subdomains of neural interactions are defined: modulatory, dynamic, and range-specific neural interactions. 4) Mechanical interactions result from nonlinear transformations of motoneuron output into mechanical actions. 5) Adaptive interactions occur when paired receptor or modulatory inputs alter future responses. To understand the role of any sensory receptor group in ventilatory control, it is necessary to define its interactions with other control system elements in each of these domains. Understanding the mechanisms of these interactions requires detailed information about the physical system subserving ventilatory control (mechanics and gas exchange) and the relevant properties of the neural network coordinating their actions.

摘要

通气控制系统利用多种感觉受体组,包括化学感受器和机械感受器,来提供有关受控变量状态的反馈。大多数对受体输入改变的通气反应通常涉及几个受体组、中枢整合机制和其他调节输入(如“状态”、激素或神经递质状态)之间的复杂相互作用。由于控制系统复杂、非线性且动态,基于单独研究的单个受体组的反射效应,很难预测给定刺激引发的最终通气反应。要全面了解感觉受体在通气控制中的作用,需要有关受体组之间以及与控制系统其他元件之间相互作用的信息。该问题的复杂性以及“相互作用”一词缺乏统一的定义,阻碍了该领域的研究。相互作用被定义为系统独立输入之间的非加性关系。在此定义范围内,描述了五个相互作用域。1)代数相互作用因通气和/或其组成部分之间的乘法和非线性关系而发生。2)闭环相互作用因呼吸控制系统中反馈回路的普遍存在而发生。3)神经相互作用反映了中枢神经系统对同时受体输入的整合,当反馈回路打开时得以体现。定义了神经相互作用的三个子域:调节性、动态性和范围特异性神经相互作用。4)机械相互作用源于运动神经元输出到机械动作的非线性转换。5)适应性相互作用发生在成对的受体或调节输入改变未来反应时。为了理解任何感觉受体组在通气控制中的作用,有必要定义其在这些域中的每一个域中与其他控制系统元件的相互作用。理解这些相互作用的机制需要有关支持通气控制的物理系统(力学和气体交换)以及协调其作用的神经网络的相关特性的详细信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验