Suppr超能文献

服务于呼吸最佳稳态控制的自适应神经网络。

Adaptive neural network that subserves optimal homeostatic control of breathing.

作者信息

Poon C S

机构信息

Harvard-MIT Division of Health Sciences and Technology, Cambridge 02139.

出版信息

Ann Biomed Eng. 1993 Sep-Oct;21(5):501-8. doi: 10.1007/BF02584332.

Abstract

An adaptive neural network model that exhibits the optimality and homeostasis characteristics of the respiratory control system is described. Based upon the Hopfield network structure and a postulated Hebb-like respiratory synapse with correlational short-term potentiation, the model is capable of mimicking the normal ventilatory responses to exercise and CO2 inputs without the need for an explicit exercise stimulus. Results suggest the possibility of an adaptive neuronal mechanism that effects optimal homeostatic regulation of respiration in mammals.

摘要

本文描述了一种具有呼吸控制系统最优性和稳态特征的自适应神经网络模型。基于霍普菲尔德网络结构以及假定的具有相关性短期增强作用的类赫布呼吸突触,该模型能够模拟对运动和二氧化碳输入的正常通气反应,而无需明确运动刺激。结果表明存在一种适应性神经元机制的可能性,该机制可实现哺乳动物呼吸的最优稳态调节。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验