Suppr超能文献

估算塞内加尔的疟疾负担:基于 MIS 2008 数据的贝叶斯零膨胀二项式地统计学建模。

Estimating the burden of malaria in Senegal: Bayesian zero-inflated binomial geostatistical modeling of the MIS 2008 data.

机构信息

Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.

出版信息

PLoS One. 2012;7(3):e32625. doi: 10.1371/journal.pone.0032625. Epub 2012 Mar 5.

Abstract

The Research Center for Human Development in Dakar (CRDH) with the technical assistance of ICF Macro and the National Malaria Control Programme (NMCP) conducted in 2008/2009 the Senegal Malaria Indicator Survey (SMIS), the first nationally representative household survey collecting parasitological data and malaria-related indicators. In this paper, we present spatially explicit parasitaemia risk estimates and number of infected children below 5 years. Geostatistical Zero-Inflated Binomial models (ZIB) were developed to take into account the large number of zero-prevalence survey locations (70%) in the data. Bayesian variable selection methods were incorporated within a geostatistical framework in order to choose the best set of environmental and climatic covariates associated with the parasitaemia risk. Model validation confirmed that the ZIB model had a better predictive ability than the standard Binomial analogue. Markov chain Monte Carlo (MCMC) methods were used for inference. Several insecticide treated nets (ITN) coverage indicators were calculated to assess the effectiveness of interventions. After adjusting for climatic and socio-economic factors, the presence of at least one ITN per every two household members and living in urban areas reduced the odds of parasitaemia by 86% and 81% respectively. Posterior estimates of the ORs related to the wealth index show a decreasing trend with the quintiles. Infection odds appear to be increasing with age. The population-adjusted prevalence ranges from 0.12% in Thillé-Boubacar to 13.1% in Dabo. Tambacounda has the highest population-adjusted predicted prevalence (8.08%) whereas the region with the highest estimated number of infected children under the age of 5 years is Kolda (13940). The contemporary map and estimates of malaria burden identify the priority areas for future control interventions and provide baseline information for monitoring and evaluation. Zero-Inflated formulations are more appropriate in modeling sparse geostatistical survey data, expected to arise more frequently as malaria research is focused on elimination.

摘要

达喀尔人类发展研究中心(CRDH)在 ICF Macro 和国家疟疾控制规划(NMCP)的技术支持下,于 2008/2009 年开展了塞内加尔疟疾指标调查(SMIS),这是首次进行全国代表性家庭调查,收集寄生虫学数据和疟疾相关指标。本文介绍了空间明确的寄生虫血症风险估计值和 5 岁以下感染儿童数量。我们采用零膨胀二项式模型(ZIB)来考虑数据中大量零流行率的调查地点(70%)。贝叶斯变量选择方法被纳入一个地统计框架内,以选择与寄生虫血症风险相关的最佳环境和气候协变量集。模型验证证实,ZIB 模型比标准二项式模拟具有更好的预测能力。马尔可夫链蒙特卡罗(MCMC)方法用于推断。计算了几种经杀虫剂处理的蚊帐(ITN)覆盖率指标,以评估干预措施的效果。在调整气候和社会经济因素后,每个家庭至少有一个 ITN 和居住在城市地区的情况下,寄生虫血症的几率分别降低了 86%和 81%。与财富指数相关的 OR 的后验估计显示出随着五分位数的下降趋势。感染几率似乎随着年龄的增长而增加。人口调整后的流行率范围从 Thillé-Boubacar 的 0.12%到 Dabo 的 13.1%。Tambacounda 具有最高的人口调整后预测流行率(8.08%),而 Kolda 地区 5 岁以下感染儿童人数估计最多(13940 人)。当代疟疾负担地图和估计值确定了未来控制干预措施的重点地区,并为监测和评估提供了基线信息。零膨胀模型在稀疏地统计调查数据建模中更为合适,随着疟疾研究重点转向消除,预计这种数据会更频繁地出现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43a3/3293829/eec014f17cab/pone.0032625.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验