Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.
Curr Opin Hematol. 2012 May;19(3):184-91. doi: 10.1097/MOH.0b013e3283523ea6.
We summarize recent experimental and computational studies that investigate molecular and cellular mechanisms of sprouting angiogenesis. We discuss how experimental tools have unveiled new opportunities for computational modeling by providing detailed phenomenological descriptions and conceptual models of cell-level behaviors underpinned by high-quality molecular data. Using recent examples, we show how new understanding results from bridging computational and experimental approaches.
Experimental data extends beyond the tip cell vs. stalk cell paradigm, and involves numerous molecular inputs such as vascular endothelial growth factor and Notch. This data is being used to generate and validate computational models, which can then be used to predict the results of hypothetical experiments that are difficult to perform in the laboratory, and to generate new hypotheses that account for system-wide interactions. As a result of this integration, descriptions of critical gradients of growth factor-receptor complexes have been generated, and new modulators of cell behavior have been described.
We suggest that the recent emphasis on the different stages of sprouting angiogenesis, and integration of experimental and computational approaches, should provide a way to manage the complexity of this process and help identify new regulatory paradigms and therapeutic targets.
我们总结了最近的实验和计算研究,这些研究调查了发芽血管生成的分子和细胞机制。我们讨论了实验工具如何通过提供细胞水平行为的详细现象描述和概念模型,并以高质量的分子数据为基础,为计算建模提供新的机会。我们使用最近的例子来说明如何通过桥接计算和实验方法来获得新的理解。
实验数据超出了尖端细胞与茎细胞范例,涉及到许多分子输入,如血管内皮生长因子和 Notch。这些数据正被用于生成和验证计算模型,这些模型可以用来预测在实验室中难以进行的假设实验的结果,并产生新的假设,以解释系统范围的相互作用。由于这种整合,已经生成了关键的生长因子-受体复合物的梯度描述,并且描述了新的调节细胞行为的调节剂。
我们认为,最近对发芽血管生成的不同阶段的强调,以及实验和计算方法的整合,应该为管理这一过程的复杂性提供一种方法,并有助于确定新的调节范式和治疗靶点。