Suppr超能文献

比较预测登革热病例数的统计模型。

Comparing statistical models to predict dengue fever notifications.

机构信息

Centre for Quantitative Medicine, Office of Clinical Sciences, Duke-NUS Graduate Medical School Singapore, Singapore 169857.

出版信息

Comput Math Methods Med. 2012;2012:758674. doi: 10.1155/2012/758674. Epub 2012 Mar 8.

Abstract

Dengue fever (DF) is a serious public health problem in many parts of the world, and, in the absence of a vaccine, disease surveillance and mosquito vector eradication are important in controlling the spread of the disease. DF is primarily transmitted by the female Aedes aegypti mosquito. We compared two statistical models that can be used in the surveillance and forecast of notifiable infectious diseases, namely, the Autoregressive Integrated Moving Average (ARIMA) model and the Knorr-Held two-component (K-H) model. The Mean Absolute Percentage Error (MAPE) was used to compare models. We developed the models using used data on DF notifications in Singapore from January 2001 till December 2006 and then validated the models with data from January 2007 till June 2008. The K-H model resulted in a slightly lower MAPE value of 17.21 as compared to the ARIMA model. We conclude that the models' performances are similar, but we found that the K-H model was relatively more difficult to fit in terms of the specification of the prior parameters and the relatively longer time taken to run the models.

摘要

登革热(DF)是世界上许多地区的一个严重公共卫生问题,并且在没有疫苗的情况下,疾病监测和蚊虫媒介根除对于控制疾病的传播非常重要。DF 主要由雌性埃及伊蚊传播。我们比较了两种可用于监测和预测法定传染病的统计模型,即自回归综合移动平均(ARIMA)模型和 Knorr-Held 两分量(K-H)模型。我们使用了新加坡 2001 年 1 月至 2006 年 12 月期间的登革热通知数据来开发模型,然后使用 2007 年 1 月至 2008 年 6 月的数据验证模型。K-H 模型的平均绝对百分比误差(MAPE)值略低,为 17.21,而 ARIMA 模型的 MAPE 值为 17.59。我们得出结论,两个模型的性能相似,但我们发现 K-H 模型在指定先验参数方面相对较难拟合,并且运行模型所需的时间相对较长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a45/3310403/13543923ef94/CMMM2012-758674.001.jpg

相似文献

1
Comparing statistical models to predict dengue fever notifications.
Comput Math Methods Med. 2012;2012:758674. doi: 10.1155/2012/758674. Epub 2012 Mar 8.
2
Three-Month Real-Time Dengue Forecast Models: An Early Warning System for Outbreak Alerts and Policy Decision Support in Singapore.
Environ Health Perspect. 2016 Sep;124(9):1369-75. doi: 10.1289/ehp.1509981. Epub 2015 Dec 11.
3
Dengue in Singapore from 2004 to 2016: Cyclical Epidemic Patterns Dominated by Serotypes 1 and 2.
Am J Trop Med Hyg. 2018 Jul;99(1):204-210. doi: 10.4269/ajtmh.17-0819. Epub 2018 May 24.
5
Analysis of significant factors for dengue fever incidence prediction.
BMC Bioinformatics. 2016 Apr 16;17:166. doi: 10.1186/s12859-016-1034-5.
6
[Current situation and surveillance on dengue fever in China, 2005 - 2007].
Zhonghua Liu Xing Bing Xue Za Zhi. 2009 Aug;30(8):802-6.
7
Development of temporal modeling for prediction of dengue infection in northeastern Thailand.
Asian Pac J Trop Med. 2012 Mar;5(3):249-52. doi: 10.1016/S1995-7645(12)60034-0.
8
Forecasting incidence of dengue in Rajasthan, using time series analyses.
Indian J Public Health. 2012 Oct-Dec;56(4):281-5. doi: 10.4103/0019-557X.106415.
10
Dengue--a re-emerging infectious disease in Singapore.
Ann Acad Med Singap. 1997 Sep;26(5):664-70.

引用本文的文献

1
Time series analysis of dengue incidence and its association with meteorological risk factors in Bangladesh.
PLoS One. 2025 Aug 18;20(8):e0323238. doi: 10.1371/journal.pone.0323238. eCollection 2025.
2
Downscaling epidemiological time series data for improving forecasting accuracy: An algorithmic approach.
PLoS One. 2023 Dec 14;18(12):e0295803. doi: 10.1371/journal.pone.0295803. eCollection 2023.
3
Spatial Methods for Inferring Extremes in Dengue Outbreak Risk in Singapore.
Viruses. 2022 Nov 4;14(11):2450. doi: 10.3390/v14112450.
4
Short-Term Prediction of COVID-19 Using Novel Hybrid Ensemble Empirical Mode Decomposition and Error Trend Seasonal Model.
Front Public Health. 2022 Jul 29;10:922795. doi: 10.3389/fpubh.2022.922795. eCollection 2022.
5
Forecasting the incidence of dengue in Bangladesh-Application of time series model.
Health Sci Rep. 2022 Jun 8;5(4):e666. doi: 10.1002/hsr2.666. eCollection 2022 Jul.
6
The Effects of Meteorological Factors on Dengue Cases in Malaysia.
Int J Environ Res Public Health. 2022 May 26;19(11):6449. doi: 10.3390/ijerph19116449.
7
Multiplicative Holts Winter Model for Trend Analysis and Forecasting of COVID-19 Spread in India.
SN Comput Sci. 2021;2(5):416. doi: 10.1007/s42979-021-00808-0. Epub 2021 Aug 16.
9
Forecasting COVID-19 in Pakistan.
PLoS One. 2020 Nov 30;15(11):e0242762. doi: 10.1371/journal.pone.0242762. eCollection 2020.
10
Prediction of Daily Blood Sampling Room Visits Based on ARIMA and SES Model.
Comput Math Methods Med. 2020 Sep 3;2020:1720134. doi: 10.1155/2020/1720134. eCollection 2020.

本文引用的文献

1
Meteorological factors and El Niño Southern Oscillation are independently associated with dengue infections.
Epidemiol Infect. 2012 Jul;140(7):1244-51. doi: 10.1017/S095026881100183X. Epub 2011 Sep 12.
2
Plug-and-play inference for disease dynamics: measles in large and small populations as a case study.
J R Soc Interface. 2010 Feb 6;7(43):271-83. doi: 10.1098/rsif.2009.0151. Epub 2009 Jun 17.
3
Spatial and temporal clustering of dengue virus transmission in Thai villages.
PLoS Med. 2008 Nov 4;5(11):e205. doi: 10.1371/journal.pmed.0050205.
4
Inapparent infections and cholera dynamics.
Nature. 2008 Aug 14;454(7206):877-80. doi: 10.1038/nature07084.
6
Assessing the roles of temperature, precipitation, and ENSO in dengue re-emergence on the Texas-Mexico border region.
Salud Publica Mex. 2008 May-Jun;50(3):227-34. doi: 10.1590/s0036-36342008000300006.
7
Spatial and temporal dynamics of dengue fever in Peru: 1994-2006.
Epidemiol Infect. 2008 Dec;136(12):1667-77. doi: 10.1017/S0950268808000290. Epub 2008 Apr 8.
8
Spatial correlation of incidence of dengue with socioeconomic, demographic and environmental variables in a Brazilian city.
Sci Total Environ. 2008 Apr 15;393(2-3):241-8. doi: 10.1016/j.scitotenv.2008.01.010. Epub 2008 Feb 8.
9
Climate, mosquito indices and the epidemiology of dengue fever in Trinidad (2002-2004).
Ann Trop Med Parasitol. 2007 Jan;101(1):69-77. doi: 10.1179/136485907X157059.
10
Automated detection of infectious disease outbreaks: hierarchical time series models.
Stat Med. 2006 Dec 30;25(24):4179-96. doi: 10.1002/sim.2674.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验