Suppr超能文献

细胞和核形状生成建模方法的评估。

Evaluation of methods for generative modeling of cell and nuclear shape.

机构信息

Computational Biology Department, School of Computer Science.

Departments of Biological Sciences, Biomedical Engineering, and Machine Learning, Carnegie Mellon University, Pittsburgh, PA, USA.

出版信息

Bioinformatics. 2019 Jul 15;35(14):2475-2485. doi: 10.1093/bioinformatics/bty983.

Abstract

MOTIVATION

Cell shape provides both geometry for, and a reflection of, cell function. Numerous methods for describing and modeling cell shape have been described, but previous evaluation of these methods in terms of the accuracy of generative models has been limited.

RESULTS

Here we compare traditional methods and deep autoencoders to build generative models for cell shapes in terms of the accuracy with which shapes can be reconstructed from models. We evaluated the methods on different collections of 2D and 3D cell images, and found that none of the methods gave accurate reconstructions using low dimensional encodings. As expected, much higher accuracies were observed using high dimensional encodings, with outline-based methods significantly outperforming image-based autoencoders. The latter tended to encode all cells as having smooth shapes, even for high dimensions. For complex 3D cell shapes, we developed a significant improvement of a method based on the spherical harmonic transform that performs significantly better than other methods. We obtained similar results for the joint modeling of cell and nuclear shape. Finally, we evaluated the modeling of shape dynamics by interpolation in the shape space. We found that our modified method provided lower deformation energies along linear interpolation paths than other methods. This allows practical shape evolution in high dimensional shape spaces. We conclude that our improved spherical harmonic based methods are preferable for cell and nuclear shape modeling, providing better representations, higher computational efficiency and requiring fewer training images than deep learning methods.

AVAILABILITY AND IMPLEMENTATION

All software and data is available at http://murphylab.cbd.cmu.edu/software.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

细胞形状为细胞功能提供了几何形状,并反映了细胞功能。已经描述了许多用于描述和建模细胞形状的方法,但是以前对这些方法的评估仅限于生成模型的准确性。

结果

在这里,我们根据从模型重建形状的准确性来比较传统方法和深度自动编码器来构建细胞形状的生成模型。我们在不同的 2D 和 3D 细胞图像集合上评估了这些方法,发现使用低维编码时,没有一种方法可以进行准确的重建。不出所料,使用高维编码可以观察到更高的准确性,基于轮廓的方法明显优于基于图像的自动编码器。后者往往将所有细胞编码为具有平滑形状,即使对于高维也是如此。对于复杂的 3D 细胞形状,我们开发了一种基于球谐变换的方法的重大改进,该方法的性能明显优于其他方法。对于细胞和核形状的联合建模,我们获得了类似的结果。最后,我们评估了形状空间中的插值对形状动态的建模。我们发现,与其他方法相比,我们修改后的方法在线性插值路径上提供了较低的变形能。这允许在高维形状空间中进行实际的形状演化。我们得出的结论是,我们改进的基于球谐的方法更适合于细胞和核形状建模,提供了更好的表示,更高的计算效率,并且比深度学习方法需要更少的训练图像。

可用性和实现

所有软件和数据都可在 http://murphylab.cbd.cmu.edu/software 上获得。

补充信息

补充数据可在生物信息学在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a88/6612826/1369d2c85f3a/bty983f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验