Suppr超能文献

表征空间变化的性能以改进多图谱多标签分割。

Characterizing spatially varying performance to improve multi-atlas multi-label segmentation.

作者信息

Asman Andrew J, Landman Bennett A

机构信息

Electrical Engineering, Vanderbilt University, Nashville, TN 37235, USA.

出版信息

Inf Process Med Imaging. 2011;22:85-96. doi: 10.1007/978-3-642-22092-0_8.

Abstract

Segmentation of medical images has become critical to building understanding of biological structure-functional relationships. Atlas registration and label transfer provide a fully-automated approach for deriving segmentations given atlas training data. When multiple atlases are used, statistical label fusion techniques have been shown to dramatically improve segmentation accuracy. However, these techniques have had limited success with complex structures and atlases with varying similarity to the target data. Previous approaches have parameterized raters by a single confusion matrix, so that spatially varying performance for a single rater is neglected. Herein, we reformulate the statistical fusion model to describe raters by regional confusion matrices so that co-registered atlas labels can be fused in an optimal, spatially varying manner, which leads to an improved label fusion estimation with heterogeneous atlases. The advantages of this approach are characterized in a simulation and an empirical whole-brain labeling task.

摘要

医学图像分割对于理解生物结构-功能关系至关重要。图谱配准和标签转移提供了一种在给定图谱训练数据的情况下推导分割结果的全自动方法。当使用多个图谱时,统计标签融合技术已被证明能显著提高分割精度。然而,这些技术在处理复杂结构以及与目标数据相似度各异的图谱时,取得的成功有限。以往的方法通过单个混淆矩阵对评分者进行参数化,从而忽略了单个评分者在空间上变化的表现。在此,我们重新构建统计融合模型,通过区域混淆矩阵来描述评分者,以便能以最优的、空间变化的方式融合共同配准的图谱标签,这会带来使用异质图谱时改进的标签融合估计。该方法的优势在一个模拟实验和一个全脑标记实证任务中得以体现。

相似文献

1
Characterizing spatially varying performance to improve multi-atlas multi-label segmentation.
Inf Process Med Imaging. 2011;22:85-96. doi: 10.1007/978-3-642-22092-0_8.
2
Non-local statistical label fusion for multi-atlas segmentation.
Med Image Anal. 2013 Feb;17(2):194-208. doi: 10.1016/j.media.2012.10.002. Epub 2012 Nov 29.
3
A unified framework for cross-modality multi-atlas segmentation of brain MRI.
Med Image Anal. 2013 Dec;17(8):1181-91. doi: 10.1016/j.media.2013.08.001. Epub 2013 Aug 19.
4
Encoding atlases by randomized classification forests for efficient multi-atlas label propagation.
Med Image Anal. 2014 Dec;18(8):1262-73. doi: 10.1016/j.media.2014.06.010. Epub 2014 Jul 2.
5
A transversal approach for patch-based label fusion via matrix completion.
Med Image Anal. 2015 Aug;24(1):135-148. doi: 10.1016/j.media.2015.06.002. Epub 2015 Jun 20.
6
Optimal weights for multi-atlas label fusion.
Inf Process Med Imaging. 2011;22:73-84. doi: 10.1007/978-3-642-22092-0_7.
7
Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy.
Neuroimage. 2009 Jul 1;46(3):726-38. doi: 10.1016/j.neuroimage.2009.02.018. Epub 2009 Feb 23.
8
A probabilistic, non-parametric framework for inter-modality label fusion.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):576-83. doi: 10.1007/978-3-642-40760-4_72.
9
Groupwise segmentation with multi-atlas joint label fusion.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):711-8. doi: 10.1007/978-3-642-40811-3_89.
10
A generative model for image segmentation based on label fusion.
IEEE Trans Med Imaging. 2010 Oct;29(10):1714-29. doi: 10.1109/TMI.2010.2050897. Epub 2010 Jun 17.

引用本文的文献

2
Habituation during encoding: A new approach to the evaluation of memory deficits in schizophrenia.
Schizophr Res. 2020 Sep;223:179-185. doi: 10.1016/j.schres.2020.07.007. Epub 2020 Jul 28.
3
Disrupted Habituation in the Early Stage of Psychosis.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2019 Nov;4(11):1004-1012. doi: 10.1016/j.bpsc.2019.06.007. Epub 2019 Jun 27.
4
Hippocampal Network Modularity Is Associated With Relational Memory Dysfunction in Schizophrenia.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2018 May;3(5):423-432. doi: 10.1016/j.bpsc.2018.02.001. Epub 2018 Feb 22.
5
Multi-Scale Hippocampal Parcellation Improves Atlas-Based Segmentation Accuracy.
Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10133. doi: 10.1117/12.2254425. Epub 2017 Feb 24.
6
Automatic labeling of MR brain images by hierarchical learning of atlas forests.
Med Phys. 2016 Mar;43(3):1175-86. doi: 10.1118/1.4941011.
7
Vanderbilt University Institute of Imaging Science Center for Computational Imaging XNAT: A multimodal data archive and processing environment.
Neuroimage. 2016 Jan 1;124(Pt B):1097-1101. doi: 10.1016/j.neuroimage.2015.05.021. Epub 2015 May 16.
8
Optimal MAP Parameters Estimation in STAPLE Using Local Intensity Similarity Information.
IEEE J Biomed Health Inform. 2015 Sep;19(5):1589-97. doi: 10.1109/JBHI.2015.2428279. Epub 2015 Apr 30.
9
Anatomy-guided Dense Individualized and Common Connectivity-based Cortical Landmarks (A-DICCCOL).
IEEE Trans Biomed Eng. 2015 Apr;62(4):1108-19. doi: 10.1109/TBME.2014.2369491. Epub 2014 Nov 20.
10
Group Sparsity Constrained Automatic Brain Label Propagation.
Mach Learn Multimodal Interact. 2012;7588:45-53. doi: 10.1007/978-3-642-35428-1_6.

本文引用的文献

1
Robust Atlas-Based Segmentation of Highly Variable Anatomy: Left Atrium Segmentation.
Stat Atlases Comput Models Heart. 2010;6364:85-94. doi: 10.1007/978-3-642-15835-3_9.
2
Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (SIMPLE).
IEEE Trans Med Imaging. 2010 Dec;29(12):2000-8. doi: 10.1109/TMI.2010.2057442. Epub 2010 Jul 26.
3
A generative model for image segmentation based on label fusion.
IEEE Trans Med Imaging. 2010 Oct;29(10):1714-29. doi: 10.1109/TMI.2010.2050897. Epub 2010 Jun 17.
4
Fast and robust multi-atlas segmentation of brain magnetic resonance images.
Neuroimage. 2010 Feb 1;49(3):2352-65. doi: 10.1016/j.neuroimage.2009.10.026. Epub 2009 Oct 24.
5
Multi-atlas-based segmentation with local decision fusion--application to cardiac and aortic segmentation in CT scans.
IEEE Trans Med Imaging. 2009 Jul;28(7):1000-10. doi: 10.1109/TMI.2008.2011480. Epub 2009 Jan 6.
9
The adaptive bases algorithm for intensity-based nonrigid image registration.
IEEE Trans Med Imaging. 2003 Nov;22(11):1470-9. doi: 10.1109/TMI.2003.819299.
10
Automatic identification of gray matter structures from MRI to improve the segmentation of white matter lesions.
J Image Guid Surg. 1995;1(6):326-38. doi: 10.1002/(SICI)1522-712X(1995)1:6<326::AID-IGS4>3.0.CO;2-C.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验