Shelobolina Evgenya, Konishi Hiromi, Xu Huifang, Benzine Jason, Xiong Mai Yia, Wu Tao, Blöthe Marco, Roden Eric
Department of Geoscience, University of Wisconsin-Madison Madison, WI, USA.
Front Microbiol. 2012 Apr 4;3:134. doi: 10.3389/fmicb.2012.00134. eCollection 2012.
The biogeochemistry of phyllosilicate-Fe redox cycling was studied in a Phalaris arundinacea (reed canary grass) dominated redoximorphic soil from Shovelers Sink, a small glacial depression near Madison, WI. The clay size fraction of Shovelers Sink soil accounts for 16% of the dry weight of the soil, yet contributes 74% of total Fe. The dominant mineral in the clay size fraction is mixed layer illite-smectite, and in contrast to many other soils and sediments, Fe(III) oxides are present in low abundance. We examined the Fe biogeochemistry of Shovelers Sink soils, estimated the abundance of Fe redox cycling microorganisms, and isolated in pure culture representative phyllosilicate-Fe oxidizing and reducing organisms. The abundance of phyllosilicate-Fe reducing and oxidizing organisms was low compared to culturable aerobic heterotrophs. Both direct isolation and dilution-to-extinction approaches using structural Fe(II) in Bancroft biotite as a Fe(II) source, and O(2) as the electron acceptor, resulted in recovery of common rhizosphere organisms including Bradyrhizobium spp. and strains of Cupriavidus necator and Ralstonia solanacearum. In addition to oxidizing biotite and soluble Fe(II) with O(2), each of these isolates was able to oxidize Fe(II) in reduced NAu-2 smectite with [Formula: see text] as the electron acceptor. Oxidized NAu-2 smectite or amorphous Fe(III) oxide served as electron acceptors for enrichment and isolation of Fe(III)-reducing microorganisms, resulting in recovery of a strain related to Geobacter toluenoxydans. The ability of the recovered microorganisms to cycle phyllosilicate-Fe was verified in an experiment with native Shovelers Sink clay. This study confirms that Fe in the native Shovelers Sink clay is readily available for microbial redox transformation and can be cycled by the Fe(III)-reducing and Fe(II)-oxidizing microorganisms recovered from the soil.
在威斯康星州麦迪逊附近一个小型冰川洼地——铲土机水槽(Shovelers Sink)中,以虉草(Phalaris arundinacea)为主导的氧化还原潜育土中,对层状硅酸盐 - 铁氧化还原循环的生物地球化学进行了研究。铲土机水槽土壤的黏粒级分占土壤干重的16%,却贡献了总铁含量的74%。黏粒级分中的主要矿物是伊利石 - 蒙脱石混层,与许多其他土壤和沉积物不同的是,铁(III)氧化物含量较低。我们研究了铲土机水槽土壤的铁生物地球化学,估计了铁氧化还原循环微生物群落丰度,并在纯培养中分离出具有代表性的层状硅酸盐 - 铁氧化和还原微生物。与可培养的需氧异养菌相比,层状硅酸盐 - 铁还原菌和氧化菌的丰度较低。使用班克罗夫特黑云母中的结构铁(II)作为铁(II)源、氧气作为电子受体的直接分离法和稀释至灭绝法,均分离出了常见的根际微生物,包括慢生根瘤菌属(Bradyrhizobium spp.)以及食酸丛毛单胞菌(Cupriavidus necator)和青枯雷尔氏菌(Ralstonia solanacearum)的菌株。除了利用氧气氧化黑云母和可溶性铁(II)外,这些分离菌株中的每一种都能够以[公式:见原文]作为电子受体,氧化还原态的NAu - 2蒙脱石中的铁(II)。氧化态的NAu - 2蒙脱石或无定形铁(III)氧化物作为电子受体,用于富集和分离铁(III)还原微生物,得到了一株与甲苯氧化地杆菌(Geobacter toluenoxydans)相关的菌株。在一项使用铲土机水槽原生黏土的实验中,验证了所分离微生物进行层状硅酸盐 - 铁循环的能力。本研究证实,铲土机水槽原生黏土中的铁易于进行微生物氧化还原转化,并且可以被从该土壤中分离出的铁(III)还原菌和铁(II)氧化菌所循环利用。