Suppr超能文献

大鼠入球小动脉数学模型中血管运动反应的自动调节与传导

Autoregulation and conduction of vasomotor responses in a mathematical model of the rat afferent arteriole.

作者信息

Sgouralis Ioannis, Layton Anita T

机构信息

Department of Mathematics, Duke University, Durham, NC 27708-0320, USA.

出版信息

Am J Physiol Renal Physiol. 2012 Jul 15;303(2):F229-39. doi: 10.1152/ajprenal.00589.2011. Epub 2012 Apr 11.

Abstract

We have formulated a mathematical model for the rat afferent arteriole (AA). Our model consists of a series of arteriolar smooth muscle cells and endothelial cells, each of which represents ion transport, cell membrane potential, and gap junction coupling. Cellular contraction and wall mechanics are also represented for the smooth muscle cells. Blood flow through the AA lumen is described by Poiseuille flow. The AA model's representation of the myogenic response is based on the hypothesis that changes in hydrostatic pressure induce changes in the activity of nonselective cation channels. The resulting changes in membrane potential then affect calcium influx through changes in the activity of the voltage-gated calcium channels, so that vessel diameter decreases with increasing pressure values. With this configuration, the model AA maintains roughly stable renal blood flow within a physiologic range of blood flow pressure. Model simulation of vasoconstriction initiated from local stimulation also agrees well with findings in the experimental literature, notably those of Steinhausen et al. (Steinhausen M, Endlich K, Nobiling R, Rarekh N, Schütt F. J Physiol 505: 493-501, 1997), which indicated that conduction of vasoconstrictive response decays more rapidly in the upstream flow direction than downstream. The model can be incorporated into models of integrated renal hemodynamic regulation.

摘要

我们已经为大鼠入球小动脉(AA)建立了一个数学模型。我们的模型由一系列小动脉平滑肌细胞和内皮细胞组成,每个细胞都代表离子转运、细胞膜电位和缝隙连接耦合。平滑肌细胞还体现了细胞收缩和血管壁力学。通过AA管腔的血流用泊肃叶流来描述。AA模型对肌源性反应的体现基于这样一个假设:静水压力的变化会引起非选择性阳离子通道活性的改变。由此产生的膜电位变化随后通过电压门控钙通道活性的改变影响钙内流,从而使血管直径随压力值的增加而减小。通过这种配置,模型AA在生理血流压力范围内维持大致稳定的肾血流量。由局部刺激引发的血管收缩的模型模拟结果也与实验文献中的发现非常吻合,特别是Steinhausen等人(Steinhausen M, Endlich K, Nobiling R, Rarekh N, Schütt F. J Physiol 505: 493 - 501, 1997)的研究结果,该研究表明血管收缩反应在向上游血流方向的传导比向下游更快衰减。该模型可以纳入综合肾血流动力学调节模型中。

相似文献

1
Autoregulation and conduction of vasomotor responses in a mathematical model of the rat afferent arteriole.
Am J Physiol Renal Physiol. 2012 Jul 15;303(2):F229-39. doi: 10.1152/ajprenal.00589.2011. Epub 2012 Apr 11.
2
A mathematical model of the myogenic response to systolic pressure in the afferent arteriole.
Am J Physiol Renal Physiol. 2011 Mar;300(3):F669-81. doi: 10.1152/ajprenal.00382.2010. Epub 2010 Dec 29.
3
Theoretical assessment of renal autoregulatory mechanisms.
Am J Physiol Renal Physiol. 2014 Jun 1;306(11):F1357-71. doi: 10.1152/ajprenal.00649.2013. Epub 2014 Mar 12.
4
BKCa and KV channels limit conducted vasomotor responses in rat mesenteric terminal arterioles.
Pflugers Arch. 2012 Feb;463(2):279-95. doi: 10.1007/s00424-011-1049-8. Epub 2011 Nov 4.
5
Alterations in basal protein kinase C activity modulate renal afferent arteriolar myogenic reactivity.
Am J Physiol. 1998 Aug;275(2):H467-75. doi: 10.1152/ajpheart.1998.275.2.H467.
6
Conducted vasomotor responses in arterioles: characteristics, mechanisms and physiological significance.
Acta Physiol Scand. 1999 Sep;167(1):11-21. doi: 10.1046/j.1365-201x.1999.00603.x.
8
Endothelial cell signaling during conducted vasomotor responses.
Am J Physiol Heart Circ Physiol. 2003 Jul;285(1):H119-26. doi: 10.1152/ajpheart.00643.2002.
9
A multinephron model of renal blood flow autoregulation by tubuloglomerular feedback and myogenic response.
Acta Physiol Scand. 1991 Sep;143(1):71-92. doi: 10.1111/j.1748-1716.1991.tb09203.x.
10
Analysis of interaction between TGF and the myogenic response in renal blood flow autoregulation.
Am J Physiol. 1995 Oct;269(4 Pt 2):F581-93. doi: 10.1152/ajprenal.1995.269.4.F581.

引用本文的文献

2
Modeling the interaction between tubuloglomerular feedback and myogenic mechanisms in the control of glomerular mechanics.
Front Physiol. 2024 Jun 20;15:1410764. doi: 10.3389/fphys.2024.1410764. eCollection 2024.
3
The conducted vasomotor response and the principles of electrical communication in resistance arteries.
Physiol Rev. 2024 Jan 1;104(1):33-84. doi: 10.1152/physrev.00035.2022. Epub 2023 Jul 6.
4
Sex-specific computational models for blood pressure regulation in the rat.
Am J Physiol Renal Physiol. 2020 Apr 1;318(4):F888-F900. doi: 10.1152/ajprenal.00376.2019. Epub 2020 Feb 10.
5
Functional implications of the sex differences in transporter abundance along the rat nephron: modeling and analysis.
Am J Physiol Renal Physiol. 2019 Dec 1;317(6):F1462-F1474. doi: 10.1152/ajprenal.00352.2019. Epub 2019 Sep 30.
6
Sex-specific long-term blood pressure regulation: Modeling and analysis.
Comput Biol Med. 2019 Jan;104:139-148. doi: 10.1016/j.compbiomed.2018.11.002. Epub 2018 Nov 10.
8
Functional implications of sexual dimorphism of transporter patterns along the rat proximal tubule: modeling and analysis.
Am J Physiol Renal Physiol. 2018 Sep 1;315(3):F692-F700. doi: 10.1152/ajprenal.00171.2018. Epub 2018 May 30.
9
Renal medullary and urinary oxygen tension during cardiopulmonary bypass in the rat.
Math Med Biol. 2017 Sep 1;34(3):313-333. doi: 10.1093/imammb/dqw010.
10
p66Shc regulates renal vascular tone in hypertension-induced nephropathy.
J Clin Invest. 2016 Jul 1;126(7):2533-46. doi: 10.1172/JCI75079. Epub 2016 Jun 6.

本文引用的文献

1
A mathematical model of the myogenic response to systolic pressure in the afferent arteriole.
Am J Physiol Renal Physiol. 2011 Mar;300(3):F669-81. doi: 10.1152/ajprenal.00382.2010. Epub 2010 Dec 29.
2
Feedback-mediated dynamics in a model of a compliant thick ascending limb.
Math Biosci. 2010 Dec;228(2):185-94. doi: 10.1016/j.mbs.2010.10.002. Epub 2010 Oct 8.
3
Theoretical model of blood flow autoregulation: roles of myogenic, shear-dependent, and metabolic responses.
Am J Physiol Heart Circ Physiol. 2008 Oct;295(4):H1572-9. doi: 10.1152/ajpheart.00262.2008. Epub 2008 Aug 22.
4
Theoretical model of metabolic blood flow regulation: roles of ATP release by red blood cells and conducted responses.
Am J Physiol Heart Circ Physiol. 2008 Oct;295(4):H1562-71. doi: 10.1152/ajpheart.00261.2008. Epub 2008 Aug 8.
5
Systolic and mean blood pressures and afferent arteriolar myogenic response dynamics: a modeling approach.
Am J Physiol Regul Integr Comp Physiol. 2008 Nov;295(5):R1502-11. doi: 10.1152/ajpregu.00490.2007. Epub 2008 Aug 6.
6
7
Nonlinear interactions in renal blood flow regulation.
Am J Physiol Regul Integr Comp Physiol. 2005 May;288(5):R1143-59. doi: 10.1152/ajpregu.00539.2004. Epub 2005 Jan 27.
8
Systolic pressure and the myogenic response of the renal afferent arteriole.
Acta Physiol Scand. 2004 Aug;181(4):407-13. doi: 10.1111/j.1365-201X.2004.01312.x.
10
Renal myogenic response: kinetic attributes and physiological role.
Circ Res. 2002 Jun 28;90(12):1316-24. doi: 10.1161/01.res.0000024262.11534.18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验