Electronics and Information Systems, Ghent University, Ghent, Belgium.
PLoS One. 2012;7(4):e33758. doi: 10.1371/journal.pone.0033758. Epub 2012 Apr 4.
This work introduces a novel classifier for a P300-based speller, which, contrary to common methods, can be trained entirely unsupervisedly using an Expectation Maximization approach, eliminating the need for costly dataset collection or tedious calibration sessions. We use publicly available datasets for validation of our method and show that our unsupervised classifier performs competitively with supervised state-of-the-art spellers. Finally, we demonstrate the added value of our method in different experimental settings which reflect realistic usage situations of increasing difficulty and which would be difficult or impossible to tackle with existing supervised or adaptive methods.
这项工作介绍了一种新的基于 P300 的拼写器分类器,与常见方法不同,它可以完全使用期望最大化方法进行无监督训练,从而消除了昂贵的数据集收集或繁琐的校准过程的需要。我们使用公开可用的数据集来验证我们的方法,并表明我们的无监督分类器与监督的最先进的拼写器具有竞争力。最后,我们展示了我们的方法在不同实验设置下的附加值,这些设置反映了越来越困难的现实使用情况,而这些情况对于现有的监督或自适应方法来说是难以或不可能解决的。