Suppr超能文献

一种提高深度神经网络检测P300信号性能的新方法:使用遗传算法优化误差曲面曲率

A New Method to Improve the Performance of Deep Neural Networks in Detecting P300 Signals: Optimizing Curvature of Error Surface Using Genetic Algorithm.

作者信息

Shojaedini Seyed Vahab, Morabbi Sajedeh, Keyvanpour Mohamad Reza

机构信息

PhD, Associate professor in Biomedical Engineering, Department of Biomedical Engineering, Iranian Research Organization for Science and Technology, Tehran, Iran.

MSc, Department of Computer Engineering, Alzahra University, Tehran, Iran.

出版信息

J Biomed Phys Eng. 2021 Jun 1;11(3):357-366. doi: 10.31661/jbpe.v0i0.975. eCollection 2021 Jun.

Abstract

BACKGROUND

Deep neural networks have been widely used in detection of P300 signal in Brain Machine Interface (BMI) systems which are rely on Event-Related Potentials (ERPs) (i.e. P300 signals). Such networks have high curvature variation in their error surface hampering their favorable performance. Therefore, the variations in curvature of the error surface must be minimized to improve the performance of these networks in detecting P300 signals.

OBJECTIVE

The aim of this paper is to introduce a method for minimizing the curvature of the error surface during training Convolutional Neural Network (CNN). The curvature variation of the error surface is highly dependent on model parameters of deep neural network; therefore, we try to minimize this curvature by optimizing the model parameters.

MATERIAL AND METHODS

In this experimental study an attempt is made to tune the CNN parameters affecting the curvature of its error surface in order to obtain the best possible learning. For achieving this goal, Genetic Algorithm is utilized to optimize the above parameters in order to minimize the curvature variations.

RESULTS

The performance of the proposed algorithm was evaluated on EPFL dataset. The obtained results demonstrated that the proposed method detected the P300 signals with maximally 98.91% classification accuracy and 98.54% True Positive Ratio (TPR).

CONCLUSION

The obtained results showed that using genetic algorithm for minimizing curvature of the error surface in CNN increased its accuracy in parallel with decreasing the variance of the results. Consequently, it may be concluded that the proposed method has considerable potential to be used as P300 detection module in BMI applications.

摘要

背景

深度神经网络已广泛应用于脑机接口(BMI)系统中P300信号的检测,该系统依赖于事件相关电位(ERP)(即P300信号)。此类网络在其误差表面具有高曲率变化,这妨碍了它们的良好性能。因此,必须将误差表面曲率的变化最小化,以提高这些网络在检测P300信号方面的性能。

目的

本文旨在介绍一种在训练卷积神经网络(CNN)期间最小化误差表面曲率的方法。误差表面的曲率变化高度依赖于深度神经网络的模型参数;因此,我们试图通过优化模型参数来最小化这种曲率。

材料与方法

在本实验研究中,尝试调整影响CNN误差表面曲率的参数,以获得最佳学习效果。为实现这一目标,利用遗传算法优化上述参数,以最小化曲率变化。

结果

在EPFL数据集上评估了所提算法的性能。所得结果表明,所提方法检测P300信号的最大分类准确率为98.91%,真阳性率(TPR)为98.54%。

结论

所得结果表明,在CNN中使用遗传算法最小化误差表面的曲率,在降低结果方差的同时提高了其准确性。因此,可以得出结论,所提方法在BMI应用中作为P300检测模块具有相当大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54c1/8236098/20eef70a23ba/JBPE-11-357-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验