Suppr超能文献

用于多类脑机接口的增强概率潜在狄利克雷分配。

An enhanced probabilistic LDA for multi-class brain computer interface.

机构信息

Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

PLoS One. 2011 Jan 31;6(1):e14634. doi: 10.1371/journal.pone.0014634.

Abstract

BACKGROUND

There is a growing interest in the study of signal processing and machine learning methods, which may make the brain computer interface (BCI) a new communication channel. A variety of classification methods have been utilized to convert the brain information into control commands. However, most of the methods only produce uncalibrated values and uncertain results.

METHODOLOGY/PRINCIPAL FINDINGS: In this study, we presented a probabilistic method "enhanced BLDA" (EBLDA) for multi-class motor imagery BCI, which utilized Bayesian linear discriminant analysis (BLDA) with probabilistic output to improve the classification performance. EBLDA builds a new classifier that enlarges training dataset by adding test samples with high probability. EBLDA is based on the hypothesis that unlabeled samples with high probability provide valuable information to enhance learning process and generate a classifier with refined decision boundaries. To investigate the performance of EBLDA, we first used carefully designed simulated datasets to study how EBLDA works. Then, we adopted a real BCI dataset for further evaluation. The current study shows that: 1) Probabilistic information can improve the performance of BCI for subjects with high kappa coefficient; 2) With supplementary training samples from the test samples of high probability, EBLDA is significantly better than BLDA in classification, especially for small training datasets, in which EBLDA can obtain a refined decision boundary by a shift of BLDA decision boundary with the support of the information from test samples.

CONCLUSIONS/SIGNIFICANCE: The proposed EBLDA could potentially reduce training effort. Therefore, it is valuable for us to realize an effective online BCI system, especially for multi-class BCI systems.

摘要

背景

信号处理和机器学习方法的研究兴趣日益浓厚,这可能使脑机接口(BCI)成为新的通信渠道。已经使用了各种分类方法将脑信息转换为控制命令。但是,大多数方法仅产生未校准的值和不确定的结果。

方法/主要发现:在这项研究中,我们提出了一种用于多类运动想象 BCI 的概率方法“增强 BLDA”(EBLDA),它利用贝叶斯线性判别分析(BLDA)和概率输出来提高分类性能。EBLDA 通过添加具有高概率的测试样本来构建一个新的分类器,从而扩大训练数据集。EBLDA 基于这样的假设:具有高概率的未标记样本提供了有价值的信息,可增强学习过程并生成具有精细决策边界的分类器。为了研究 EBLDA 的性能,我们首先使用精心设计的模拟数据集来研究 EBLDA 的工作原理。然后,我们采用了真实的 BCI 数据集进行进一步评估。当前的研究表明:1)概率信息可以提高具有高kappa 系数的受试者的 BCI 性能;2)通过从具有高概率的测试样本中补充训练样本,EBLDA 在分类方面明显优于 BLDA,尤其是在小训练数据集中,EBLDA 可以通过 BLDA 决策边界的移动来获得精细的决策边界,该移动得到了来自测试样本的信息的支持。

结论/意义:所提出的 EBLDA 可以潜在地减少培训工作量。因此,对于我们来说,实现有效的在线 BCI 系统,尤其是对于多类 BCI 系统,是非常有价值的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c318/3031502/e22150548e2e/pone.0014634.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验