Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America.
PLoS One. 2012;7(4):e34596. doi: 10.1371/journal.pone.0034596. Epub 2012 Apr 10.
The micro-array profiling of micro-RNA has been performed in rat skeletal muscle tissues, isolated from male adult offspring of intrauterine plus postnatal growth restricted model (IPGR). Apparently, the GLUT4 mRNA expression in male sk. muscle was found to be unaltered in contrast to females. The over-expression of miR-29a and miR-23a in the experimental group of SMSP (Starved Mother Starved Pups) have been found to regulate the glucose transport activity with respect to their control counterparts CMCP (Control Mother Control Pups) as confirmed in rat L6 myoblast-myocyte cell culture system. The ex-vivo experimentation demonstrates an aberration in insulin signaling pathway in male sk. muscle that leads to the localization of the membrane-bound Glut4 protein. We have identified through a series of experiments one important protein factor SMAD4, a co-SMAD critical to the TGF-beta signaling pathway. This factor is targeted by miR-29a, as identified in an in vitro reporter-assay system in cell-culture experiment. The other micro-RNA, miR-23a, targets SMAD4 indirectly that seems to be critical in regulating insulin-dependent glucose transport activity. MicroRNA mimics, inhibitors and siRNA studies indicate the role of SMAD4 as inhibitory for glucose transport activities in normal physiological condition. The data demonstrate for the first time a critical function of microRNAs in fine-tuning the regulation of glucose transport in skeletal muscle. Chronic starved conditions (IPGR) in sk. muscle up-regulates microRNA changing the target protein expression patterns, such as SMAD4, to alter the glucose transport pathways for the survival. The innovative outcome of this paper identifies a critical pathway (TGF-beta) that may act negatively for the mammalian glucose transport machinery.
已经在雄性成年宫内加产后生长受限模型(IPGR)的大鼠骨骼肌组织中进行了 microRNA 的微阵列分析。显然,与雌性相比,雄性 sk 肌肉中的 GLUT4 mRNA 表达没有改变。在 SMSP(饥饿母亲饥饿幼崽)实验组中发现,miR-29a 和 miR-23a 的过表达调节了葡萄糖转运活性,与对照 CMCP(对照母亲对照幼崽)相比,这在大鼠 L6 成肌细胞-肌细胞培养系统中得到了证实。离体实验证明了雄性 sk 肌肉胰岛素信号通路的异常,导致膜结合 Glut4 蛋白的定位。我们通过一系列实验鉴定了一个重要的蛋白质因子 SMAD4,它是 TGF-β信号通路的关键共 SMAD。这个因子是 miR-29a 的靶点,这在细胞培养实验中的体外报告基因检测系统中得到了证实。另一种 microRNA,miR-23a,间接靶向 SMAD4,这似乎在调节胰岛素依赖性葡萄糖转运活性中至关重要。miRNA 模拟物、抑制剂和 siRNA 研究表明,SMAD4 在正常生理条件下作为葡萄糖转运活性的抑制因子发挥作用。该数据首次证明了 microRNAs 在精细调节骨骼肌葡萄糖转运中的关键作用。慢性饥饿条件(IPGR)在 sk 肌肉中上调 microRNA,改变靶蛋白表达模式,如 SMAD4,以改变葡萄糖转运途径以维持生存。本文的创新成果确定了一个关键途径(TGF-β),它可能对哺乳动物葡萄糖转运机制产生负面影响。