Suppr超能文献

缩短的多能细胞周期。

The abbreviated pluripotent cell cycle.

机构信息

Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.

出版信息

J Cell Physiol. 2013 Jan;228(1):9-20. doi: 10.1002/jcp.24104.

Abstract

Human embryonic stem cells (hESCs) and induced pluripotent stem cells proliferate rapidly and divide symmetrically producing equivalent progeny cells. In contrast, lineage committed cells acquire an extended symmetrical cell cycle. Self-renewal of tissue-specific stem cells is sustained by asymmetric cell division where one progeny cell remains a progenitor while the partner progeny cell exits the cell cycle and differentiates. There are three principal contexts for considering the operation and regulation of the pluripotent cell cycle: temporal, regulatory, and structural. The primary temporal context that the pluripotent self-renewal cell cycle of hESCs is a short G1 period without reducing periods of time allocated to S phase, G2, and mitosis. The rules that govern proliferation in hESCs remain to be comprehensively established. However, several lines of evidence suggest a key role for the naïve transcriptome of hESCs, which is competent to stringently regulate the embryonic stem cell (ESC) cell cycle. This supports the requirements of pluripotent cells to self-propagate while suppressing expression of genes that confer lineage commitment and/or tissue specificity. However, for the first time, we consider unique dimensions to the architectural organization and assembly of regulatory machinery for gene expression in nuclear microenviornments that define parameters of pluripotency. From both fundamental biological and clinical perspectives, understanding control of the abbreviated ESC cycle can provide options to coordinate control of proliferation versus differentiation. Wound healing, tissue engineering, and cell-based therapy to mitigate developmental aberrations illustrate applications that benefit from knowledge of the biology of the pluripotent cell cycle.

摘要

人类胚胎干细胞(hESCs)和诱导多能干细胞快速增殖并对称分裂,产生等量的祖细胞。相比之下,谱系定向细胞获得了延长的对称细胞周期。组织特异性干细胞的自我更新由不对称细胞分裂维持,其中一个祖细胞保持为祖细胞,而另一个祖细胞则退出细胞周期并分化。在考虑多能细胞周期的操作和调节时有三个主要的上下文:时间、调节和结构。hESCs 的多能自我更新细胞周期的主要时间上下文是短的 G1 期,而不减少 S 期、G2 期和有丝分裂的时间分配。hESCs 中增殖的规则仍有待全面建立。然而,有几条证据表明 hESCs 的幼稚转录组起着关键作用,它能够严格调节胚胎干细胞(ESC)细胞周期。这支持了多能细胞自我繁殖的要求,同时抑制了赋予谱系定向和/或组织特异性的基因的表达。然而,我们首次考虑了核微环境中基因表达的调节机制的建筑组织和组装的独特方面,这些方面定义了多能性的参数。从基础生物学和临床的角度来看,理解缩短的 ESC 周期的控制可以为协调增殖与分化的控制提供选择。伤口愈合、组织工程和基于细胞的治疗以减轻发育异常,说明了从多能细胞周期的生物学知识中受益的应用。

相似文献

1
The abbreviated pluripotent cell cycle.
J Cell Physiol. 2013 Jan;228(1):9-20. doi: 10.1002/jcp.24104.
2
The architectural organization of human stem cell cycle regulatory machinery.
Curr Pharm Des. 2012;18(13):1679-85. doi: 10.2174/138161212799859639.
3
Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.
Exp Biol Med (Maywood). 2013 Mar;238(3):271-5. doi: 10.1177/1535370213480711.
5
Regulation of cyclin E1 expression in human pluripotent stem cells and derived neural progeny.
Cell Cycle. 2018;17(14):1721-1744. doi: 10.1080/15384101.2018.1496740. Epub 2018 Aug 10.
8
Embryonic stem cell microRNAs: defining factors in induced pluripotent (iPS) and cancer (CSC) stem cells?
Curr Stem Cell Res Ther. 2009 Sep;4(3):168-77. doi: 10.2174/157488809789057400.
10
myc maintains embryonic stem cell pluripotency and self-renewal.
Differentiation. 2010 Jul;80(1):9-19. doi: 10.1016/j.diff.2010.05.001. Epub 2010 May 27.

引用本文的文献

3
Topological data analysis of pattern formation of human induced pluripotent stem cell colonies.
Sci Rep. 2025 Apr 4;15(1):11544. doi: 10.1038/s41598-025-90592-1.
4
Enhanced sensitivity and scalability with a Chip-Tip workflow enables deep single-cell proteomics.
Nat Methods. 2025 Mar;22(3):499-509. doi: 10.1038/s41592-024-02558-2. Epub 2025 Jan 16.
5
Origin of Chromosome 12 Trisomy Surge in Human Induced Pluripotent Stem Cells (iPSCs).
bioRxiv. 2025 Jan 23:2024.12.02.626470. doi: 10.1101/2024.12.02.626470.
6
Effect of hinokitiol in ameliorating oral cancer: in vitro and in silico evidences.
Odontology. 2025 Apr;113(2):750-763. doi: 10.1007/s10266-024-01020-1. Epub 2024 Nov 14.
7
Stem Cell Origin of Cancer: Clinical Implications for Cancer Immunity and Immunotherapy.
Cancers (Basel). 2023 Nov 13;15(22):5385. doi: 10.3390/cancers15225385.
8
The potential role of CDC20 in tumorigenesis, cancer progression and therapy: A narrative review.
Medicine (Baltimore). 2023 Sep 8;102(36):e35038. doi: 10.1097/MD.0000000000035038.
9
Profiling of immune responses by lactate modulation in cervical cancer reveals key features driving clinical outcome.
Heliyon. 2023 Mar 25;9(4):e14896. doi: 10.1016/j.heliyon.2023.e14896. eCollection 2023 Apr.
10
Spatiotemporal Epigenetic Control of the Histone Gene Chromatin Landscape during the Cell Cycle.
Crit Rev Eukaryot Gene Expr. 2023;33(3):85-97. doi: 10.1615/CritRevEukaryotGeneExpr.2022046190.

本文引用的文献

1
MicroRNA biogenesis and regulation of bone remodeling.
Arthritis Res Ther. 2011 May 27;13(3):220. doi: 10.1186/ar3325.
2
LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells.
Nat Cell Biol. 2011 Jun;13(6):652-9. doi: 10.1038/ncb2246. Epub 2011 May 22.
3
Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency.
Cell Stem Cell. 2011 Apr 8;8(4):376-88. doi: 10.1016/j.stem.2011.03.001.
4
XIST RNA and architecture of the inactive X chromosome: implications for the repeat genome.
Cold Spring Harb Symp Quant Biol. 2010;75:345-56. doi: 10.1101/sqb.2010.75.030. Epub 2011 Mar 29.
5
The cancer stem cell: premises, promises and challenges.
Nat Med. 2011 Mar;17(3):313-9. doi: 10.1038/nm.2304.
8
A high proliferation rate is required for cell reprogramming and maintenance of human embryonic stem cell identity.
Curr Biol. 2011 Jan 11;21(1):45-52. doi: 10.1016/j.cub.2010.11.049. Epub 2010 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验