Rengachari Srinivasan, Bezerra Gustavo A, Riegler-Berket Lina, Gruber Christian C, Sturm Christian, Taschler Ulrike, Boeszoermenyi Andras, Dreveny Ingrid, Zimmermann Robert, Gruber Karl, Oberer Monika
Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria.
Biochim Biophys Acta. 2012 Jul;1821(7):1012-21. doi: 10.1016/j.bbalip.2012.04.006. Epub 2012 Apr 27.
Monoacylglycerol lipases (MGLs) catalyse the hydrolysis of monoacylglycerol into free fatty acid and glycerol. MGLs have been identified throughout all genera of life and have adopted different substrate specificities depending on their physiological role. In humans, MGL plays an integral part in lipid metabolism affecting energy homeostasis, signalling processes and cancer cell progression. In bacteria, MGLs degrade short-chain monoacylglycerols which are otherwise toxic to the organism. We report the crystal structures of MGL from the bacterium Bacillus sp. H257 (bMGL) in its free form at 1.2Å and in complex with phenylmethylsulfonyl fluoride at 1.8Å resolution. In both structures, bMGL adopts an α/β hydrolase fold with a cap in an open conformation. Access to the active site residues, which were unambiguously identified from the protein structure, is facilitated by two different channels. The larger channel constitutes the highly hydrophobic substrate binding pocket with enough room to accommodate monoacylglycerol. The other channel is rather small and resembles the proposed glycerol exit hole in human MGL. Molecular dynamics simulation of bMGL yielded open and closed states of the entrance channel and the glycerol exit hole. Despite differences in the number of residues, secondary structure elements, and low sequence identity in the cap region, this first structure of a bacterial MGL reveals striking structural conservation of the overall cap architecture in comparison with human MGL. Thus it provides insight into the structural conservation of the cap amongst MGLs throughout evolution and provides a framework for rationalising substrate specificities in each organism.
单酰甘油脂肪酶(MGLs)催化单酰甘油水解为游离脂肪酸和甘油。MGLs在所有生命属中都已被鉴定出来,并根据其生理作用具有不同的底物特异性。在人类中,MGL在影响能量稳态、信号传导过程和癌细胞进展的脂质代谢中起着不可或缺的作用。在细菌中,MGLs降解短链单酰甘油,否则这些单酰甘油对生物体有毒。我们报告了来自芽孢杆菌属H257菌株(bMGL)的MGL的晶体结构,其游离形式分辨率为1.2Å,与苯甲基磺酰氟结合的复合物分辨率为1.8Å。在这两种结构中,bMGL均采用α/β水解酶折叠结构,其帽处于开放构象。从蛋白质结构中明确鉴定出的活性位点残基可通过两个不同的通道进入。较大的通道构成高度疏水的底物结合口袋,有足够空间容纳单酰甘油。另一个通道相当小,类似于人类MGL中提出的甘油出口孔。bMGL的分子动力学模拟产生了入口通道和甘油出口孔的开放和关闭状态。尽管帽区域的残基数、二级结构元件存在差异且序列同一性较低,但这种细菌MGL的首个结构与人类MGL相比,揭示了帽总体结构的显著结构保守性。因此,它为深入了解MGLs在整个进化过程中帽的结构保守性提供了见解,并为合理化每种生物体中的底物特异性提供了框架。