Suppr超能文献

高糖诱导的果蝇胰岛素抵抗依赖于神经拉扎罗脂质运载蛋白。

High sugar-induced insulin resistance in Drosophila relies on the lipocalin Neural Lazarillo.

机构信息

Institute of Biology Valrose (iBV), CNRS UMR 7707, INSERM UMR 1091, University of Nice-Sophia Antipolis, Nice, France.

出版信息

PLoS One. 2012;7(5):e36583. doi: 10.1371/journal.pone.0036583. Epub 2012 May 2.

Abstract

In multicellular organisms, insulin/IGF signaling (IIS) plays a central role in matching energy needs with uptake and storage, participating in functions as diverse as metabolic homeostasis, growth, reproduction and ageing. In mammals, this pleiotropy of action relies in part on a dichotomy of action of insulin, IGF-I and their respective membrane-bound receptors. In organisms with simpler IIS, this functional separation is questionable. In Drosophila IIS consists of several insulin-like peptides called Dilps, activating a unique membrane receptor and its downstream signaling cascade. During larval development, IIS is involved in metabolic homeostasis and growth. We have used feeding conditions (high sugar diet, HSD) that induce an important change in metabolic homeostasis to monitor possible effects on growth. Unexpectedly we observed that HSD-fed animals exhibited severe growth inhibition as a consequence of peripheral Dilp resistance. Dilp-resistant animals present several metabolic disorders similar to those observed in type II diabetes (T2D) patients. By exploring the molecular mechanisms involved in Drosophila Dilp resistance, we found a major role for the lipocalin Neural Lazarillo (NLaz), a target of JNK signaling. NLaz expression is strongly increased upon HSD and animals heterozygous for an NLaz null mutation are fully protected from HSD-induced Dilp resistance. NLaz is a secreted protein homologous to the Retinol-Binding Protein 4 involved in the onset of T2D in human and mice. These results indicate that insulin resistance shares common molecular mechanisms in flies and human and that Drosophila could emerge as a powerful genetic system to study some aspects of this complex syndrome.

摘要

在多细胞生物中,胰岛素/IGF 信号(IIS)在能量需求与摄取和储存之间的匹配中起着核心作用,参与了代谢稳态、生长、繁殖和衰老等多种功能。在哺乳动物中,这种作用的多效性部分依赖于胰岛素、IGF-I 及其各自的膜结合受体的作用二分法。在 IIS 更简单的生物中,这种功能分离是值得怀疑的。在果蝇 IIS 中,由几种叫做 Dilps 的胰岛素样肽组成,激活独特的膜受体及其下游信号级联。在幼虫发育过程中,IIS 参与代谢稳态和生长。我们使用了诱导代谢稳态发生重要变化的喂养条件(高糖饮食,HSD)来监测可能对生长产生的影响。出乎意料的是,我们观察到 HSD 喂养的动物由于外周 Dilp 抵抗而表现出严重的生长抑制。Dilp 抵抗的动物表现出几种与 2 型糖尿病(T2D)患者观察到的相似的代谢紊乱。通过探索涉及果蝇 Dilp 抵抗的分子机制,我们发现神经拉扎罗(NLaz)的主要作用,这是 JNK 信号的一个靶标。NLaz 在 HSD 下表达强烈增加,并且 NLaz 杂合缺失突变的动物对 HSD 诱导的 Dilp 抵抗完全具有保护作用。NLaz 是一种分泌蛋白,与人类和小鼠中 2 型糖尿病发病相关的视黄醇结合蛋白 4 同源。这些结果表明,胰岛素抵抗在果蝇和人类中具有共同的分子机制,并且果蝇可能成为研究这种复杂综合征某些方面的强大遗传系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4d8/3342234/b3820a6770eb/pone.0036583.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验