Suppr超能文献

标准和双稳态浦肯野细胞模型中相关模式的存储。

Storage of correlated patterns in standard and bistable Purkinje cell models.

机构信息

Laboratory of Neurophysics and Physiology, CNRS and Université Paris Descartes, Paris, France.

出版信息

PLoS Comput Biol. 2012;8(4):e1002448. doi: 10.1371/journal.pcbi.1002448. Epub 2012 Apr 26.

Abstract

The cerebellum has long been considered to undergo supervised learning, with climbing fibers acting as a 'teaching' or 'error' signal. Purkinje cells (PCs), the sole output of the cerebellar cortex, have been considered as analogs of perceptrons storing input/output associations. In support of this hypothesis, a recent study found that the distribution of synaptic weights of a perceptron at maximal capacity is in striking agreement with experimental data in adult rats. However, the calculation was performed using random uncorrelated inputs and outputs. This is a clearly unrealistic assumption since sensory inputs and motor outputs carry a substantial degree of temporal correlations. In this paper, we consider a binary output neuron with a large number of inputs, which is required to store associations between temporally correlated sequences of binary inputs and outputs, modelled as Markov chains. Storage capacity is found to increase with both input and output correlations, and diverges in the limit where both go to unity. We also investigate the capacity of a bistable output unit, since PCs have been shown to be bistable in some experimental conditions. Bistability is shown to enhance storage capacity whenever the output correlation is stronger than the input correlation. Distribution of synaptic weights at maximal capacity is shown to be independent on correlations, and is also unaffected by the presence of bistability.

摘要

小脑长期以来被认为经历了监督学习,而 climbing fibers 则充当了“教学”或“错误”信号。小脑皮层的唯一输出 Purkinje 细胞(PC)被认为是存储输入/输出关联的感知机的模拟物。支持这一假说的是,最近的一项研究发现,在最大容量下感知机的突触权重分布与成年大鼠的实验数据惊人地吻合。然而,该计算是使用随机无相关的输入和输出进行的。这显然是不现实的假设,因为感觉输入和运动输出具有相当程度的时间相关性。在本文中,我们考虑了一个具有大量输入的二进制输出神经元,它需要存储作为马尔可夫链的时间相关的二进制输入和输出序列之间的关联。我们发现存储容量随输入和输出相关性的增加而增加,并且在两者都趋近于 1 时发散。我们还研究了双稳态输出单元的容量,因为在某些实验条件下已经证明 PC 是双稳态的。只要输出相关性强于输入相关性,双稳态就会增强存储容量。在最大容量下的突触权重分布与相关性无关,也不受双稳态存在的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00f6/3343114/0683cdf6d75e/pcbi.1002448.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验