California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.
Nanomedicine (Lond). 2012 May;7(5):751-70. doi: 10.2217/nnm.12.30.
The optical excitation of surface plasmons in metal nanoparticles leads to nanoscale spatial confinement of electromagnetic fields. The confined electromagnetic fields can generate intense, localized thermal energy and large near-field optical forces. The interaction between these effects and nearby molecules has led to the emerging field known as molecular plasmonics. Recent advances in molecular plasmonics have enabled novel optical materials and devices with applications in biology and nanomedicine. In this article, we categorize three main types of interactions between molecules and surface plasmons: optical, thermal and mechanical. Within the scope of each type of interaction, we will review applications of molecular plasmonics in biology and nanomedicine. We include a wide range of applications that involve sensing, spectral analysis, imaging, delivery, manipulation and heating of molecules, biomolecules or cells using plasmonic effects. We also briefly describe the physical principles of molecular plasmonics and progress in the nanofabrication, surface functionalization and bioconjugation of metal nanoparticles.
金属纳米粒子中的表面等离激元的光学激发导致电磁场的纳米尺度空间限制。受限的电磁场可以产生强烈的、局域的热能和大的近场光学力。这些效应与附近分子之间的相互作用导致了新兴的分子等离激元学领域。分子等离激元学的最新进展使具有生物学和纳米医学应用的新型光学材料和器件成为可能。在本文中,我们将分子与表面等离激元之间的三种主要相互作用类型进行分类:光学、热和机械。在每种相互作用类型的范围内,我们将回顾分子等离激元学在生物学和纳米医学中的应用。我们包括了广泛的应用,涉及使用等离子体效应感应、光谱分析、成像、分子、生物分子或细胞的输送、操纵和加热。我们还简要描述了分子等离激元学的物理原理以及金属纳米粒子的纳米制造、表面功能化和生物共轭的进展。