Vertebrate Genomics Department and Otto-Warburg Laboratory, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany.
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W140-6. doi: 10.1093/nar/gks492. Epub 2012 May 30.
Knowledge of all molecular interactions that potentially take place in the cell is a key for a detailed understanding of cellular processes. Currently available interaction data, such as protein-protein interaction maps, are known to contain false positives that inevitably diminish the accuracy of network-based inferences. Interaction confidence scoring is thus a crucial intermediate step after obtaining interaction data and before using it in an interaction network-based inference approach. It enables to weight individual interactions according to the likelihood that they actually take place in the cell, and can be used to filter out false positives. We describe a web tool called IntScore which calculates confidence scores for user-specified sets of interactions. IntScore provides six network topology- and annotation-based confidence scoring methods. It also enables the integration of scores calculated by the different methods into an aggregate score using machine learning approaches. IntScore is user-friendly and extensively documented. It is freely available at http://intscore.molgen.mpg.de.
了解细胞中可能发生的所有分子相互作用是深入了解细胞过程的关键。目前可用的交互数据,如蛋白质-蛋白质相互作用图谱,已知包含不可避免地降低基于网络推断准确性的假阳性。因此,交互置信评分是在获得交互数据之后、在基于交互网络的推断方法中使用之前的关键中间步骤。它能够根据交互实际上在细胞中发生的可能性对单个交互进行加权,并可用于过滤掉假阳性。我们描述了一个名为 IntScore 的网络工具,它为用户指定的交互集计算置信分数。IntScore 提供了六种基于网络拓扑和注释的置信评分方法。它还允许使用机器学习方法将不同方法计算的分数集成到综合分数中。IntScore 用户友好且文档丰富。它可免费在 http://intscore.molgen.mpg.de 获得。