Suppr超能文献

基于非参数贝叶斯方法的混合人群中局部遗传血统的稳健估计。

Robust estimation of local genetic ancestry in admixed populations using a nonparametric Bayesian approach.

机构信息

School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.

出版信息

Genetics. 2012 Aug;191(4):1295-308. doi: 10.1534/genetics.112.140228. Epub 2012 May 29.

Abstract

We present a new haplotype-based approach for inferring local genetic ancestry of individuals in an admixed population. Most existing approaches for local ancestry estimation ignore the latent genetic relatedness between ancestral populations and treat them as independent. In this article, we exploit such information by building an inheritance model that describes both the ancestral populations and the admixed population jointly in a unified framework. Based on an assumption that the common hypothetical founder haplotypes give rise to both the ancestral and the admixed population haplotypes, we employ an infinite hidden Markov model to characterize each ancestral population and further extend it to generate the admixed population. Through an effective utilization of the population structural information under a principled nonparametric Bayesian framework, the resulting model is significantly less sensitive to the choice and the amount of training data for ancestral populations than state-of-the-art algorithms. We also improve the robustness under deviation from common modeling assumptions by incorporating population-specific scale parameters that allow variable recombination rates in different populations. Our method is applicable to an admixed population from an arbitrary number of ancestral populations and also performs competitively in terms of spurious ancestry proportions under a general multiway admixture assumption. We validate the proposed method by simulation under various admixing scenarios and present empirical analysis results from a worldwide-distributed dataset from the Human Genome Diversity Project.

摘要

我们提出了一种新的基于单倍型的方法,用于推断混合人群中个体的局部遗传祖先。大多数现有的局部祖先估计方法忽略了祖先群体之间潜在的遗传亲缘关系,并将其视为独立的。在本文中,我们通过构建一个遗传模型来利用这些信息,该模型在统一的框架中联合描述了祖先群体和混合群体。基于常见假设的共同起始单倍型导致了祖先和混合群体单倍型的假设,我们采用了一个无限隐藏马尔可夫模型来描述每个祖先群体,并进一步扩展它来生成混合群体。通过在原则性的无参数贝叶斯框架下有效利用群体结构信息,与最先进的算法相比,该模型对祖先群体的选择和训练数据量的敏感性显著降低。我们还通过引入特定于群体的比例参数来提高对偏离常见建模假设的稳健性,该参数允许不同群体的重组率不同。我们的方法适用于任意数量祖先群体的混合群体,并且在一般的多向混合假设下,在虚假祖先比例方面表现也很有竞争力。我们通过各种混合场景下的模拟验证了所提出的方法,并从人类基因组多样性计划的全球分布数据集呈现了经验分析结果。

相似文献

9
On the inference of ancestries in admixed populations.关于混合群体中祖先的推断。
Genome Res. 2008 Apr;18(4):668-75. doi: 10.1101/gr.072751.107. Epub 2008 Mar 18.

引用本文的文献

8
Differential Evolution approach to detect recent admixture.用于检测近期混合的差分进化方法。
BMC Genomics. 2015;16 Suppl 8(Suppl 8):S9. doi: 10.1186/1471-2164-16-S8-S9. Epub 2015 Jun 18.
9
hiHMM: Bayesian non-parametric joint inference of chromatin state maps.hiHMM:染色质状态图谱的贝叶斯非参数联合推断
Bioinformatics. 2015 Jul 1;31(13):2066-74. doi: 10.1093/bioinformatics/btv117. Epub 2015 Feb 27.

本文引用的文献

6
Genetic landscape of Eurasia and "admixture" in Uyghurs.欧亚大陆的基因图谱与维吾尔族的“混合血统”
Am J Hum Genet. 2009 Dec;85(6):934-7; author reply 937-9. doi: 10.1016/j.ajhg.2009.10.024.
7
Fast model-based estimation of ancestry in unrelated individuals.基于模型的无关个体祖先快速估计
Genome Res. 2009 Sep;19(9):1655-64. doi: 10.1101/gr.094052.109. Epub 2009 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验