Suppr超能文献

头部和颈部计算机断层扫描中的归一化金属伪影减少。

Normalized metal artifact reduction in head and neck computed tomography.

机构信息

Department of Radiology, University of Erlangen, Erlangen, Germany.

出版信息

Invest Radiol. 2012 Jul;47(7):415-21. doi: 10.1097/RLI.0b013e3182532f17.

Abstract

OBJECTIVE

Artifacts from dental hardware affect image quality and the visualization of lesions in the oral cavity and oropharynx in computed tomography (CT). Therefore, magnetic resonance imaging is considered the imaging modality of choice in this region. Standard methods for metal artifact reduction (MAR) in CT replace the metal-affected raw data by interpolation, which is prone to new artifacts. We developed a generalized normalization technique for MAR (NMAR) that aims to suppress algorithm-induced artifacts and validated the performance of this algorithm in a clinical trial.

MATERIAL AND METHODS

A 3-dimensional forward projection identifies the metal-affected raw data in the original projections after metal is segmented in the image domain by thresholding. A prior image is used to normalize the projections before interpolation. The original raw data are divided pixel-wise by the projection data of the prior image and, after interpolation, are denormalized again. Data from 19 consecutive patients with metal artifacts from dental hardware were reconstructed with standard filtered backprojection (FBP), linear interpolation MAR (LIMAR), and NMAR. The image quality of slices containing metal was analyzed for the severity of artifacts and diagnostic value; magnetic resonance imaging performed the same day on a 3-T system served as a reference standard in all cases.

RESULTS

A total of 260 slices containing metal dental hardware were analyzed. A total of 164 slices were nondiagnostic with FBP, 157 slices with LIMAR, and 87 slices with NMAR. The mean (SD) number of slices per patient with severe artifacts was 10.1 (3.7), 9.6 (4.6), and 5.4 (3.6) and the mean (SD) number of slices with artifacts affecting diagnostic confidence was 3.3 (1.7), 4.9 (2.9), and 3.7 (1.9) for FBP, LIMAR, and NMAR, respectively (P < 0.001). Pairwise comparison did not show significant differences between FBP and LIMAR (P = 0.40), but there were significant differences between FBP and NMAR as well as LIMAR and NMAR (both P < 0.001). Interobserver agreement was excellent (κ = 0.974). Two malignant lesions were unmasked with NMAR image reconstructions. No algorithm-related artifacts were detected in regions that did not contain metal in NMAR images.

CONCLUSION

Normalized MAR has the potential to improve image quality in patients with artifacts from dental hardware and to improve the diagnostic accuracy of CT of the oral cavity and oropharynx.

摘要

目的

牙硬件产生的伪影会影响口腔和口咽计算机断层扫描(CT)中病变的图像质量和可视化。因此,磁共振成像被认为是该区域的首选成像方式。CT 中用于减少金属伪影(MAR)的标准方法通过插值来替代受金属影响的原始数据,这容易产生新的伪影。我们开发了一种用于 MAR 的广义归一化技术(NMAR),旨在抑制算法诱导的伪影,并在临床试验中验证了该算法的性能。

材料和方法

在图像域中通过阈值对金属进行分割后,三维正向投影可识别原始投影中受金属影响的原始数据。使用先验图像在插值前对投影进行归一化。原始的原始数据逐像素除以先验图像的投影数据,并且在插值后再次进行去归一化。使用标准滤波反投影(FBP)、线性插值 MAR(LIMAR)和 NMAR 对 19 例连续存在牙硬件金属伪影的患者的数据进行重建。分析包含金属的切片的图像质量,评估伪影的严重程度和诊断价值;所有病例均在同一天使用 3T 系统进行磁共振成像作为参考标准。

结果

共分析了 260 个包含牙金属硬件的切片。FBP 无诊断价值的切片共有 164 个,LIMAR 有 157 个,NMAR 有 87 个。每个患者严重伪影的平均(标准差)切片数为 10.1(3.7)、9.6(4.6)和 5.4(3.6),影响诊断信心的伪影切片的平均(标准差)数为 3.3(1.7)、4.9(2.9)和 3.7(1.9),分别为 FBP、LIMAR 和 NMAR(P < 0.001)。两两比较显示 FBP 和 LIMAR 之间无显著差异(P = 0.40),但 FBP 与 NMAR 以及 LIMAR 与 NMAR 之间均有显著差异(均 P < 0.001)。观察者间一致性极好(κ=0.974)。NMAR 图像重建揭示了 2 个恶性病变。在 NMAR 图像中不包含金属的区域未检测到与算法相关的伪影。

结论

归一化 MAR 有可能改善牙硬件伪影患者的图像质量,并提高口腔和口咽 CT 的诊断准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验