Plasma Nanoscience Centre Australia, CSIRO Materials Science and Engineering, PO Box 218, Lindfield, New South Wales 2070, Australia.
ACS Nano. 2012 Jul 24;6(7):5809-19. doi: 10.1021/nn302020a. Epub 2012 Jun 15.
Effective control of morphology and electrical connectivity of networks of single-walled carbon nanotubes (SWCNTs) by using rough, nanoporous silica supports of Fe catalyst nanoparticles in catalytic chemical vapor deposition is demonstrated experimentally. The very high quality of the nanotubes is evidenced by the G-to-D Raman peak ratios (>50) within the range of the highest known ratios. Transitions from separated nanotubes on smooth SiO(2) surface to densely interconnected networks on the nanoporous SiO(2) are accompanied by an almost two-order of magnitude increase of the nanotube density. These transitions herald the hardly detectable onset of the nanoscale connectivity and are confirmed by the microanalysis and electrical measurements. The achieved effective nanotube interconnection leads to the dramatic, almost three-orders of magnitude decrease of the SWCNT network resistivity compared to networks of similar density produced by wet chemistry-based assembly of preformed nanotubes. The growth model, supported by multiscale, multiphase modeling of SWCNT nucleation reveals multiple constructive roles of the porous catalyst support in facilitating the catalyst saturation and SWCNT nucleation, consistent with the observed higher density of longer nanotubes. The associated mechanisms are related to the unique surface conditions (roughness, wettability, and reduced catalyst coalescence) on the porous SiO(2) and the increased carbon supply through the supporting porous structure. This approach is promising for the direct integration of SWCNT networks into Si-based nanodevice platforms and multiple applications ranging from nanoelectronics and energy conversion to bio- and environmental sensing.
实验证明,在催化化学气相沉积中使用粗糙、纳米多孔的铁催化剂纳米粒子的二氧化硅载体,可以有效地控制单壁碳纳米管 (SWCNT) 网络的形态和电连通性。通过 G 与 D 拉曼峰的比值(>50),可以证明纳米管的质量非常高,这一比值处于已知的最高比值范围内。从光滑 SiO2 表面上分离的纳米管到纳米多孔 SiO2 上密集互连的网络的转变,伴随着纳米管密度几乎增加了两个数量级。这些转变预示着纳米级连通性的几乎难以察觉的开始,并通过微分析和电测量得到了证实。实现的有效纳米管互连导致 SWCNT 网络电阻率的急剧下降,与通过基于湿化学的预制纳米管组装生产的类似密度的网络相比,下降了近三个数量级。该生长模型得到了多尺度、多相 SWCNT 成核模型的支持,揭示了多孔催化剂载体在促进催化剂饱和和 SWCNT 成核方面的多种建设性作用,这与观察到的更长纳米管的更高密度一致。相关机制与多孔 SiO2 上独特的表面条件(粗糙度、润湿性和催化剂聚结减少)以及通过支撑多孔结构增加的碳供应有关。这种方法有望将 SWCNT 网络直接集成到基于 Si 的纳米器件平台中,并应用于从纳米电子学和能量转换到生物和环境传感的多个领域。