Suppr超能文献

操纵碳储存调控系统进行代谢物重塑和大肠杆菌生物燃料生产。

Manipulation of the carbon storage regulator system for metabolite remodeling and biofuel production in Escherichia coli.

机构信息

Joint BioEnergy Institute, Emeryville, CA, USA.

出版信息

Microb Cell Fact. 2012 Jun 13;11:79. doi: 10.1186/1475-2859-11-79.

Abstract

BACKGROUND

Microbial engineering strategies that elicit global metabolic perturbations have the capacity to increase organism robustness for targeted metabolite production. In particular, perturbations to regulators of cellular systems that impact glycolysis and amino acid production while simultaneously decreasing fermentation by-products such as acetate and CO(2) make ideal targets. Intriguingly, perturbation of the Carbon Storage Regulator (Csr) system has been previously implicated in large changes in central carbon metabolism in E. coli. Therefore, we hypothesized that perturbation of the Csr system through the CsrA-CsrB ribonucleoprotein complex might increase production of biofuels and their intermediates from heterologous pathways.

RESULTS

We engaged the CsrA-CsrB ribonucleoprotein complex of E. coli via overexpression of CsrB. CsrB is a 350-nucleotide non-coding RNA that antagonizes CsrA, an RNA-binding protein that regulates translation of specific mRNA targets. By using shotgun proteomics and targeted metabolomics we established that elevation of CsrB levels leads to alterations in metabolite and protein levels in glycolysis, the TCA cycle and amino acid levels. Consequently, we show that such changes can be suitably applied to improve the production of desired compounds through the native fatty acid and heterologous n-butanol and isoprenoid pathways by up to two-fold. We also observed concomitant decreases in undesirable fermentation by-products such as acetate and CO(2).

CONCLUSIONS

We have demonstrated that simple engineering of the RNA-based Csr global regulatory system constitutes a novel approach to obtaining pathway-independent improvements within engineered hosts. Additionally, since Csr is conserved across most prokaryotic species, this approach may also be amenable to a wide variety of production hosts.

摘要

背景

能够引起全局代谢扰动的微生物工程策略,具有提高目标代谢产物生产的生物体稳健性的能力。特别是,对影响糖酵解和氨基酸生产的细胞系统调节剂进行干扰,同时减少发酵副产物(如乙酸盐和 CO(2)),是理想的目标。有趣的是,先前已表明,Csr 系统的扰动会导致大肠杆菌中中心碳代谢的巨大变化。因此,我们假设通过 CsrA-CsrB 核糖核蛋白复合物对 Csr 系统进行干扰,可能会增加异源途径生物燃料及其中间体的产量。

结果

我们通过过表达 CsrB 来参与大肠杆菌的 CsrA-CsrB 核糖核蛋白复合物。CsrB 是一种 350 个核苷酸的非编码 RNA,可拮抗 CsrA,后者是一种 RNA 结合蛋白,可调节特定 mRNA 靶标的翻译。通过使用鸟枪法蛋白质组学和靶向代谢组学,我们确定了 CsrB 水平的升高会导致糖酵解、TCA 循环和氨基酸水平的代谢物和蛋白质水平发生变化。因此,我们表明,通过天然脂肪酸和异源正丁醇和异戊二烯途径,这些变化可以适当地应用于提高所需化合物的产量,最高可达两倍。我们还观察到不期望的发酵副产物(如乙酸盐和 CO(2))的同时减少。

结论

我们已经证明,基于 RNA 的 Csr 全局调控系统的简单工程设计构成了一种在工程宿主中获得与途径无关的改进的新方法。此外,由于 Csr 在大多数原核生物中都保守,因此这种方法也可能适用于各种生产宿主。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/414d/3460784/2196fb62268f/1475-2859-11-79-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验