Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, England.
Environ Sci Technol. 2012 Jul 17;46(14):7621-8. doi: 10.1021/es301253s. Epub 2012 Jun 26.
Predicting the environmental impact of engineered nanomaterials (ENMs) is increasingly important owing to the prevalence of emerging nanotechnologies. We derived waterborne uptake and efflux rate constants for the estuarine snail, Peringia ulvae, exposed to dissolved Ag (AgNO(3)) and silver nanoparticles (Ag NPs), using biodynamic modeling. Uptake rates demonstrated that dissolved Ag is twice as bioavailable as Ag in nanoparticle form. Biphasic loss dynamics revealed the faster elimination of Ag from Ag NPs at the start of depuration, but similar slow efflux rate constants. The integration of biodynamic parameters into our model accurately predicted Ag tissue burdens during chronic exposure with 85% of predicted values within a factor of 2 of observed values. Zeta potentials for the Ag NPs were lower in estuarine waters than in waters of less salinity; and uptake rates in P. ulvae were slower than reported for the freshwater snail Lymnaea stagnalis in similar experiments. This suggests aggregation of Ag NPs occurs in estuarine waters and reduces, but does not eliminate, bioavailability of Ag from the Ag NPs. Biodynamic modeling provides an effective methodology to determine bioavailable metal concentrations (originating from metal and metal-oxide nanoparticles) in the environment and may aid future ENM risk assessment.
由于新兴纳米技术的普及,预测工程纳米材料(ENMs)的环境影响变得越来越重要。我们使用生物动力学模型,推导出了河口蜗牛 Peringia ulvae 暴露于溶解的 Ag(AgNO3)和银纳米颗粒(Ag NPs)时的水相摄取和外排率常数。摄取率表明,溶解的 Ag 的生物利用率是纳米颗粒形式的 Ag 的两倍。两相损失动力学表明,在开始净化时,Ag NPs 中 Ag 的消除速度更快,但缓慢的外排率常数相似。将生物动力学参数整合到我们的模型中,可以准确预测慢性暴露期间的 Ag 组织负担,预测值中有 85%在观察值的 2 倍以内。Ag NPs 的 ζ 电位在河口水中比在盐度较低的水中低;并且在 P. ulvae 中的摄取率比在类似实验中淡水蜗牛 Lymnaea stagnalis 中的摄取率慢。这表明 Ag NPs 在河口水中会发生聚集,从而降低但不会消除 Ag NPs 中 Ag 的生物利用度。生物动力学模型为确定环境中(源自金属和金属氧化物纳米颗粒)的生物有效金属浓度提供了一种有效方法,可能有助于未来的 ENM 风险评估。