Suppr超能文献

由于高通滤波,早期 ERP 和 ERF 成分中的系统偏差。

Systematic biases in early ERP and ERF components as a result of high-pass filtering.

机构信息

Neuroinformatics Doctoral Training Centre, Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, UK.

出版信息

J Neurosci Methods. 2012 Jul 30;209(1):212-8. doi: 10.1016/j.jneumeth.2012.06.011. Epub 2012 Jun 26.

Abstract

The event-related potential (ERP) and event-related field (ERF) techniques provide valuable insights into the time course of processes in the brain. Because neural signals are typically weak, researchers commonly filter the data to increase the signal-to-noise ratio. However, filtering may distort the data, leading to false results. Using our own EEG data, we show that acausal high-pass filtering can generate a systematic bias easily leading to misinterpretations of neural activity. In particular, we show that the early ERP component C1 is very sensitive to such effects. Moreover, we found that about half of the papers reporting modulations in the C1 range used a high-pass digital filter cut-off above the recommended maximum of 0.1 Hz. More generally, among 185 relevant ERP/ERF publications, 80 used cutoffs above 0.1 Hz. As a consequence, part of the ERP/ERF literature may need to be re-analyzed. We provide guidelines on how to minimize filtering artifacts.

摘要

事件相关电位(ERP)和事件相关磁场(ERF)技术为研究大脑中过程的时间进程提供了有价值的见解。由于神经信号通常很微弱,研究人员通常会对数据进行滤波以提高信噪比。然而,滤波可能会扭曲数据,导致错误的结果。我们使用自己的 EEG 数据表明,非因果高通滤波会产生系统偏差,容易导致对神经活动的误解。具体来说,我们表明早期 ERP 成分 C1 对这种影响非常敏感。此外,我们发现大约一半报道 C1 范围内调制的论文使用的高通数字滤波器截止频率高于推荐的最高 0.1 Hz。更一般地,在 185 篇相关的 ERP/ERF 出版物中,有 80 篇使用的截止频率高于 0.1 Hz。因此,部分 ERP/ERF 文献可能需要重新分析。我们提供了如何最小化滤波伪影的指南。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验