Laboratory of Retinal Cell and Molecular Biology, NEI, National Institutes of Health, Bethesda, Maryland 20892, USA.
J Biol Chem. 2010 Jan 15;285(3):1919-27. doi: 10.1074/jbc.M109.027458. Epub 2009 Nov 17.
The mechanism of retinol isomerization in the vertebrate retina visual cycle remains controversial. Does the isomerase enzyme RPE65 operate via nucleophilic addition at C(11) of the all-trans substrate, or via a carbocation mechanism? To determine this, we modeled the RPE65 substrate cleft to identify residues interacting with substrate and/or intermediate. We find that wild-type RPE65 in vitro produces 13-cis and 11-cis isomers equally robustly. All Tyr-239 mutations abolish activity. Trp-331 mutations reduce activity (W331Y to approximately 75% of wild type, W331F to approximately 50%, and W331L and W331Q to 0%) establishing a requirement for aromaticity, consistent with cation-pi carbocation stabilization. Two cleft residues modulate isomerization specificity: Thr-147 is important, because replacement by Ser increases 11-cis relative to 13-cis by 40% compared with wild type. Phe-103 mutations are opposite in action: F103L and F103I dramatically reduce 11-cis synthesis relative to 13-cis synthesis compared with wild type. Thr-147 and Phe-103 thus may be pivotal in controlling RPE65 specificity. Also, mutations affecting RPE65 activity coordinately depress 11-cis and 13-cis isomer production but diverge as 11-cis decreases to zero, whereas 13-cis reaches a plateau consistent with thermal isomerization. Lastly, experiments using labeled retinol showed exchange at 13-cis-retinol C(15) oxygen, thus confirming enzymatic isomerization for both isomers. Thus, RPE65 is not inherently 11-cis-specific and can produce both 11- and 13-cis isomers, supporting a carbocation (or radical cation) mechanism for isomerization. Specific visual cycle selectivity for 11-cis isomers instead resides downstream, attributable to mass action by CRALBP, retinol dehydrogenase 5, and high affinity of opsin apoproteins for 11-cis-retinal.
脊椎动物视网膜视觉循环中视黄醇异构化的机制仍存在争议。异构酶 RPE65 是否通过亲核试剂在全反式底物的 C(11)上进行加成,或者通过碳正离子机制进行?为了确定这一点,我们对 RPE65 底物裂缝进行建模,以确定与底物和/或中间体相互作用的残基。我们发现,体外野生型 RPE65 同样有效地产生 13-顺式和 11-顺式异构体。所有 Tyr-239 突变都使活性丧失。Trp-331 突变降低活性(W331Y 约为野生型的 75%,W331F 约为 50%,W331L 和 W331Q 为 0%),表明需要芳香性,与正碳离子-π 碳正离子稳定化一致。两个裂缝残基调节异构化特异性:Thr-147 很重要,因为用 Ser 取代会使 11-顺式相对于野生型增加 40%。Phe-103 突变的作用相反:与野生型相比,F103L 和 F103I 突变使 11-顺式合成相对于 13-顺式合成显著降低。因此,Thr-147 和 Phe-103 可能是控制 RPE65 特异性的关键。此外,影响 RPE65 活性的突变协同降低 11-顺式和 13-顺式异构体的产生,但随着 11-顺式降低到零,两者分歧,而 13-顺式达到与热异构化一致的平台。最后,使用标记视黄醇的实验表明 13-顺式视黄醇 C(15)氧的交换,从而证实了两种异构体的酶促异构化。因此,RPE65 本身并非固有 11-顺式特异性,并且可以产生 11-和 13-顺式异构体,支持异构化的碳正离子(或自由基阳离子)机制。11-顺式异构体的特异性视觉循环选择性则位于下游,归因于 CRALBP、视黄醇脱氢酶 5 和视蛋白脱辅基蛋白对 11-顺式视黄醛的高亲和力的质量作用。