Suppr超能文献

实时监测非存活空气传播粒子与空气传播菌落相关,并且可以作为日常评估细胞处理洁净室性能的可接受替代指标。

Real-time monitoring of non-viable airborne particles correlates with airborne colonies and represents an acceptable surrogate for daily assessment of cell-processing cleanroom performance.

机构信息

The Institute for Transfusion Medicine, Pittsburgh, PA, USA.

出版信息

Cytotherapy. 2012 Oct;14(9):1144-50. doi: 10.3109/14653249.2012.698728. Epub 2012 Jul 2.

Abstract

BACKGROUND AIMS

Airborne particulate monitoring is mandated as a component of good manufacturing practice. We present a procedure developed to monitor and interpret airborne particulates in an International Organization for Standardization (ISO) class 7 cleanroom used for the cell processing of Section 351 and Section 361 products.

METHODS

We collected paired viable and non-viable airborne particle data over a period of 1 year in locations chosen to provide a range of air quality. We used receiver operator characteristic (ROC) analysis to determine empirically the relationship between non-viable and viable airborne particle counts.

RESULTS

Viable and non-viable particles were well-correlated (r(2) = 0.78), with outlier observations at the low end of the scale (non-viable particles without detectable airborne colonies). ROC analysis predicted viable counts ≥ 0.5/feet(3) (a limit set by the United States Pharmacopeia) at an action limit of ≥ 32 000 particles (≥ 0.5 µ)/feet(3), with 95.6% sensitivity and 50% specificity. This limit was exceeded 2.6 times during 18 months of retrospective daily cleanroom data (an expected false alarm rate of 1.3 times/year). After implementing this action limit, we were alerted in real time to an air-handling failure undetected by our hospital facilities management.

CONCLUSIONS

A rational action limit for non-viable particles was determined based on the correlation with airborne colonies. Reaching or exceeding the action limit of 32 000 non-viable particles/feet(3) triggers suspension of cleanroom cell-processing activities, deep cleaning, investigation of air handling, and a deviation management process. Our full procedure for particle monitoring is available as an online supplement.

摘要

背景目的

空气传播颗粒监测是良好生产规范的要求之一。我们介绍了一种在用于 351 节和 361 节产品细胞处理的 ISO7 级洁净室中监测和解释空气传播颗粒的程序。

方法

我们在一年内选择不同空气质量的位置收集配对的有活力和无活力的空气传播颗粒数据。我们使用接收者操作特性(ROC)分析来确定无活力和有活力的空气传播颗粒计数之间的关系。

结果

有活力和无活力的颗粒相关性很好(r²=0.78),在规模的低端有异常值(无活力的颗粒没有可检测到的空气传播菌落)。ROC 分析预测有活力的计数≥0.5/英尺³(美国药典规定的限值)时,动作限值≥32000 个颗粒(≥0.5µ)/英尺³,灵敏度为 95.6%,特异性为 50%。在 18 个月的回顾性每日洁净室数据中,该限值超标了 2.6 次(预期的误报率为每年 1.3 次)。在实施该动作限值后,我们实时收到了医院设施管理未检测到的空气处理故障警报。

结论

根据与空气传播菌落的相关性,确定了无活力颗粒的合理动作限值。达到或超过 32000 个无活力颗粒/英尺³的动作限值会触发洁净室细胞处理活动暂停、深度清洁、空气处理调查和偏差管理流程。我们的颗粒监测完整程序可作为在线补充。

相似文献

引用本文的文献

2
Changeover method for biosafety cabinets using ozone gas.使用臭氧气体的生物安全柜转换方法。
PLoS One. 2025 Jan 28;20(1):e0318006. doi: 10.1371/journal.pone.0318006. eCollection 2025.
4
Operator-derived particles and falling bacteria in biosafety cabinets.生物安全柜内操作人员产生的微粒与沉降菌
Regen Ther. 2024 Jan 19;25:264-272. doi: 10.1016/j.reth.2024.01.001. eCollection 2024 Mar.
7
Effect of Ozone Gas on Removal of Airborne Particles.臭氧气体对去除空气中颗粒物的影响。
Eur J Dent. 2022 Jul;16(3):695-702. doi: 10.1055/s-0041-1741375. Epub 2022 Apr 18.

本文引用的文献

6
Principles of a clean operating room environment.洁净手术室环境的原则。
J Arthroplasty. 2007 Oct;22(7 Suppl 3):6-11. doi: 10.1016/j.arth.2007.05.013.
8
Environmental monitoring in stem cell banks.干细胞库中的环境监测。
Appl Microbiol Biotechnol. 2006 May;70(6):651-62. doi: 10.1007/s00253-006-0326-5. Epub 2006 Mar 10.
9
Microbiological control in stem cell banks: approaches to standardisation.干细胞库中的微生物控制:标准化方法
Appl Microbiol Biotechnol. 2005 Sep;68(4):456-66. doi: 10.1007/s00253-005-0062-2. Epub 2005 Oct 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验